MATHEMATICS

PART I

SECTION - I

Straight Objective Type

This section contains 9 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) , out of which ONLY ONE is correct.

1. Let $g(x)=\log f(x)$ where $f(x)$ is a twice differentiable positive function on $(0, \infty)$ such that $f(x+1)=$ $x f(x)$. Then, for $N=1,2,3, \ldots$,
(A) $-4\left\{1+\frac{1}{9}+\frac{1}{25}+\ldots+\frac{1}{(2 \mathrm{~N}-1)^{2}}\right\}$
(B) $4\left\{1+\frac{1}{9}+\frac{1}{25}+\ldots+\frac{1}{(2 \mathrm{~N}-1)^{2}}\right\}$
(C) $-4\left\{1+\frac{1}{9}+\frac{1}{25}+\ldots+\frac{1}{(2 \mathrm{~N}+1)^{2}}\right\}$
(C) $4\left\{1+\frac{1}{9}+\frac{1}{25}+\ldots+\frac{1}{(2 \mathrm{~N}+1)^{2}}\right\}$

Sol. (A) $\quad g(x)=\log f(x)$

$$
\begin{aligned}
& \begin{aligned}
& \Rightarrow \quad g(x+N)=\log f(x+N) \\
& f(x+1)= \\
& \begin{aligned}
\therefore f(x)
\end{aligned} \\
& \begin{aligned}
f(x+N) & =(x+N-1) f(x+N-1) \\
& =(x+N-1)(x+N-2) f(x+N-2) \ldots \\
& =(x+N-1)(x+N-2) \ldots \ldots \ldots(x+1) x f(x)
\end{aligned} \\
& \begin{aligned}
& \log f(x+N) \quad=\log (x+N-1)+\log (x+N-2)+\ldots \log (x+1)+\log x+\log f(x) \\
& \log f(x+N)-\log f(x)=\log x+\log (x+1)+\ldots \log (x+N-1)
\end{aligned} \\
& g(x+N)-g(x)=\log x+\log (x+1)+\ldots+\log (x+N-1)
\end{aligned} \\
& g^{\prime}(x+N)-g^{\prime}(x)=\frac{1}{x}+\frac{1}{x+1}+\ldots+\frac{1}{x+N-1} \\
& g^{\prime \prime}(x+N)-g^{\prime \prime}(x)=-\left[\frac{1}{x^{2}}+\frac{1}{(x+1)^{2}}+\ldots \frac{1}{(x+N-1)^{2}}\right]
\end{aligned}
$$

putting $x=\frac{1}{2}$
$g^{\prime \prime}\left(N+\frac{1}{2}\right)=g^{\prime \prime}\left[\frac{1}{2}\right]=-\left[\frac{1}{\left(\frac{1}{2}\right)^{2}}+\frac{1}{\left(\frac{3}{2}\right)^{2}}+\ldots \frac{1}{\left(\frac{2 N-1}{2}\right)^{2}}\right]=-4\left[1+\frac{1}{9}+\ldots \frac{1}{(2 n-1)^{2}}\right]$
2. Let non-collinear unit vectors \hat{a} and \hat{b} form an acute angle. A point P moves so that any time t the position vector $\overrightarrow{O P}$ (where O is the origin) is given by $\hat{a} \operatorname{cost}+\hat{b} \sin t$. When P is farthest from origin O , let M be the length of $\overrightarrow{\mathrm{OP}}$ and \hat{u} be the unit vector along $\overrightarrow{\mathrm{OP}}$. Then,
(A) $\hat{u}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|}$ and $M=(1+\hat{a} \cdot \hat{b})^{\frac{1}{2}}$
(B) $\hat{u}=\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}$ and $M=(1+\hat{a} \cdot \hat{b})^{\frac{1}{2}}$
(C) $\hat{u}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|}$ and $M=(1+2 \hat{a} \cdot \hat{b})^{\frac{1}{2}}$
(C) $\hat{u}=\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}$ and $M=(1+2 \hat{a} \cdot \hat{b})^{\frac{1}{2}}$

Sol. (A) û is along internal angle bisector of $\hat{a} \& \hat{b}$

$$
\begin{aligned}
& \hat{u}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|} \\
& \overrightarrow{O P}=\hat{a} \cos t+\hat{b} \sin t \\
& |O P|^{2}=1+2 \hat{a} \cdot \hat{b} \sin 2 t \\
& =1+\hat{a} \cdot \hat{b} \sin 2 t \\
& M^{2}=1+\hat{a} \cdot \hat{b} \\
& M=(1+\hat{a} \cdot \hat{b})^{\frac{1}{2}}
\end{aligned}
$$

3. Let $I=\int \frac{e^{x}}{e^{4 x}+e^{2 x}+1} d x, \quad J=\int \frac{e^{-x}}{e^{-4 x}+e^{-2 x}+1} d x$.

The, for an arbitrary constant C, the value of $J-I$ equals
(A) $\frac{1}{2} \log \left(\frac{e^{4 x}-e^{2 x}+1}{e^{4 x}+e^{2 x}+1}\right)+C$
(B) $\frac{1}{2} \log \left(\frac{e^{2 x}+e^{x}+1}{e^{2 x}-e^{x}+1}\right)+C$
(C) $\frac{1}{2} \log \left(\frac{e^{2 x}-e^{x}+1}{e^{2 x}-e^{x}+1}\right)+C$
(C) $\frac{1}{2} \log \left(\frac{e^{4 x}+e^{2 x}+1}{e^{4 x}-e^{2 x}+1}\right)+C$

Sol. (C)

$$
J-I=\int\left(\frac{e^{-x}}{e^{-4 x}+e^{-2 x}+1}-\frac{e^{x}}{e^{4 x}+e^{2 x}+1}\right) d x
$$

$$
\begin{aligned}
& \Rightarrow J-I=\int\left(\frac{e^{3 x}-e^{x}}{e^{4 x}+e^{2 x}+1}\right) d x \\
& \Rightarrow J-I=\int \frac{e^{2 x}\left(e^{x}-e^{-x}\right)}{\left(e^{4 x}+e^{2 x}+1\right)} d x \\
& J-I=\int \frac{\left(e^{x}-e^{-x}\right)}{\left.e^{2 x}+1+e^{-2 x}\right)} d x
\end{aligned}
$$

$$
\text { Put } e^{x}=t \Rightarrow d x=\frac{d t}{e^{x}} \text { or } \frac{d t}{t}
$$

$$
\Rightarrow \mathrm{J}-\mathrm{I}=\int \frac{(\mathrm{t}-1 / \mathrm{t})}{\left(\mathrm{t}^{2}+1+1 / \mathrm{t}\right)} \frac{\mathrm{dt}}{\mathrm{t}}
$$

$$
=\int \frac{\left(1-\frac{1}{t^{2}}\right)}{\left(t^{2}+\frac{1}{t^{2}}+1\right)} d t
$$

$$
J-I=\int \frac{\left(1-\frac{1}{t^{2}}\right)}{\left(t+\frac{1}{t}\right)^{2}-1} d t
$$

Put $\mathrm{t}+\frac{1}{\mathrm{t}}=\mathrm{u} \Rightarrow\left(1-\frac{1}{\mathrm{t}^{2}}\right) \mathrm{dt}=\mathrm{du}$
$\Rightarrow \quad J-I=\int \frac{d u}{u^{2}-1}$
$\Rightarrow \quad J-I=\frac{1}{2} \int \frac{d u}{u-1}-\frac{1}{2} \int \frac{d u}{u+1}$
$\therefore \quad \mathrm{J}-\mathrm{I}=\frac{1}{2} \log \frac{\mathrm{u}-1}{\mathrm{u}+1}$
$\therefore \quad J-I=\frac{1}{2} \log \frac{t+\frac{1}{t}-1}{t+\frac{1}{t}+1}$
as $u=t+\frac{1}{t}$

$$
\begin{aligned}
& \therefore \quad J-I=\frac{1}{2} \log \left(\frac{\mathrm{t}^{2}-\mathrm{t}+1}{\mathrm{t}^{2}+\mathrm{t}+1}\right) \\
& \therefore \quad J-I=\frac{1}{2} \log \left(\frac{\mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{\mathrm{x}}+1}{\mathrm{e}^{2 \mathrm{x}}+\mathrm{e}^{\mathrm{x}}+1}\right) \quad \text { as } \mathrm{t}=\mathrm{e}^{\mathrm{x}}
\end{aligned}
$$

4. Consider three points. $P=(-\sin (\beta-\alpha),-\cos \beta), Q=(\cos (\beta-\alpha), \sin \beta)$ and $R=(\cos (\beta-\alpha+\theta), \sin (\beta-\theta))$, where $0<\alpha, \beta, \theta<\frac{\pi}{4}$. Then,
(A) P lies on the line segment RQ
(B) Q lies on the line segment $P R$
(C) R lies on the line segment QP
(D) P,Q,R are non-collinear

Sol. (D) Let $\alpha=\beta=\theta=\pi / 6$
$\therefore P=\left(O ;-\frac{\sqrt{3}}{2}\right), Q=\left(1, \frac{1}{2}\right) \sqrt{R}=\left(\frac{\sqrt{3}}{2}, O\right)$
which are non-collinear therefore option (D) is correct
5. An experiment has 10 equally likely outcomes. Let A and B be two non-empty events of the experiment. If A consists of 4 outcomes, the number of outcomes that B must have so that A and B are independent, is
(A) 2,4 or 8
(B) 3,6 or 9
(c) 4 or 8
(d) 5 or 10

Sol. (D) By using option (D)

$$
\begin{aligned}
& P(A \cap B)=\frac{4}{10} \times \frac{5}{10}=\frac{2}{10} \\
& P(A \cap B)=\frac{4}{10} \times \frac{10}{10}=\frac{4}{10}
\end{aligned}
$$

hence option (D) is correct
6. The area of the region between the curves $y=\sqrt{\frac{1+\sin x}{\cos x}}$ and $y=\sqrt{\frac{1-\sin x}{\cos x}}$ bounded by the lines $x=0$ and $x=\frac{\pi}{4}$ is
(A) $\int_{0}^{\sqrt{2}-1} \frac{t}{\left(1+\mathrm{t}^{2}\right) \sqrt{1-\mathrm{t}^{2}}} d t$
(B) $\int_{0}^{\sqrt{2}-1} \frac{4 t}{\left(1+\mathrm{t}^{2}\right) \sqrt{1-\mathrm{t}^{2}}} \mathrm{dt}$
(C) $\int_{0}^{\sqrt{2}+1} \frac{4 t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}} d t$
(D) $\int_{0}^{\sqrt{2}+1} \frac{t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}} d t$

Sol. (B)

Desired Area
put $\tan \mathrm{x} / 2=\mathrm{t}$

$$
\mathrm{dx}=\frac{2 \mathrm{dt}}{\left(1+\mathrm{t}^{2}\right)}
$$

$$
=\int_{0}^{\sqrt{2}-1} \frac{2 \mathrm{t}}{\sqrt{1-\mathrm{t}^{2}}} \cdot \frac{2 \mathrm{dt}}{\left(1+\mathrm{t}^{2}\right)}
$$

$$
=\int_{0}^{\sqrt{2}-1} \frac{4 t}{\sqrt{1+t^{2}} \sqrt{1-t^{2}}} d t
$$

$$
\begin{aligned}
& =\int_{0}^{\pi / 4}\left(\sqrt{\frac{1+\sin x}{\cos x}}-\sqrt{\frac{1-\sin x}{\cos x}}\right) d x \\
& =\int_{0}^{\pi / 4}\left(\sqrt{\frac{1+\frac{2 \tan x / 2}{1+\tan ^{2} x / 2}}{\frac{1-\tan ^{2} x / 2}{1+\tan ^{2} x / 2}}}-\sqrt{\frac{1-\frac{2 \tan x / 2}{1+\tan ^{2} x / 2}}{\frac{1-\tan ^{2} x / 2}{1+\tan ^{2} x / 2}}}\right) d \mathrm{dx} \\
& =\int_{0}^{\pi / 4}\left(\frac{|(\tan x / 2+1)|}{\sqrt{1-\tan ^{2} x / 2}}-\frac{|(1-\tan x / 2)|}{\sqrt{1-\tan ^{2} x / 2}}\right) d x \\
& =\int_{0}^{\pi / 4} \frac{2 \tan x / 2}{\sqrt{1-\tan ^{2} x / 2}} d x \\
& \text { [as } 0<\mathrm{x}<\pi / 4 \text {] }
\end{aligned}
$$

7. Consider a branch of the hyperbola $x^{2}-2 y^{2}-2 \sqrt{2} x-4 \sqrt{2} y-6=0$ with vertex at the point A. Let B be one of the end points of its latus rectum. If C is the focus of the hyperbola nearest to the point A, then the area of the triangle $A B C$ is
(A) $1-\sqrt{\frac{2}{3}}$
(B) $\sqrt{\frac{3}{2}}-1$
(c) $1+\sqrt{\frac{2}{3}}$
(d) $\sqrt{\frac{3}{2}}+1$

Sol. (B) $x^{2}-2 y^{2}-2 \sqrt{2} x-4 \sqrt{2} y-6=0$
$\Rightarrow \quad \frac{(x-\sqrt{2})^{2}}{4}-\frac{(y-\sqrt{2})^{2}}{2}=1$
$\Rightarrow \quad \frac{x^{2}}{2^{2}}-\frac{y^{2}}{2}=1$
$e=\sqrt{1+\frac{2}{4}}=\sqrt{\frac{3}{2}}$
Hence required Area $=\frac{1}{2}(a e-a) \frac{b^{2}}{a}$

$$
\begin{aligned}
& =\frac{1}{z} \times z\left(\frac{\sqrt{3}}{\sqrt{2}}-1\right) \times \frac{z}{z} \\
& =\sqrt{\frac{3}{2}}-1
\end{aligned}
$$

Hence option (B) is correct
8. A particle P starts from the point $z_{0}=1+2 i$, where $i=\sqrt{-1}$. It moves first horizontally away from origin by 5 units and then vertically away from origin by 3 units to reach a point z_{1}. From z_{1} the particle moves $\sqrt{2}$ units in the direction of the vector $\hat{i}+\hat{j}$ and then it moves through an angle $\frac{\pi}{2}$ in anticlockwise direction on a circle with centre at origin, to reach a point z_{2}. The point z_{2} is given by
(A) $6+7 i$
(B) $-7+6 i$
(c) $7+6 i$
(d) $-6+7 i$

Sol. (D) $\quad Z_{0}(1,2)$

$$
\begin{aligned}
& Z_{1}(6,5) \\
& r \cos \theta=7 \\
& r \sin \theta=6
\end{aligned}
$$

$Z_{2}\left(r \cos \left(\theta+90^{\circ}\right), r \sin \left(\theta+90^{\circ}\right)\right)$

$$
\begin{array}{ll}
& Z_{2}\left(r \cos \left(\theta+90^{\circ}\right), r \sin \left(\theta+90^{\circ}\right)\right. \\
\Rightarrow \quad & Z_{2}(-r \sin \theta, r \cos \theta) \\
\Rightarrow \quad & Z_{2}(-6,7) \\
\therefore \quad & Z_{2}=-6+7 i
\end{array}
$$

9. Let the function $\mathrm{g}:(-\infty, \infty) \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ be given by $g(\mathrm{u})=2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$. Then, g is
(A) even and is strictly increasing in $(0, \infty)$
(B) odd and is strictly decreasing in $(-\infty, \infty)$
(C) odd and is strictly increasing in $(-\infty, \infty)$
(D) neither even nor odd, but is strictly increasing in $(-\infty, \infty)$

Sol. (C)

$$
\begin{aligned}
& g(u)=2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2} \\
& \therefore \quad g(u)=2 \frac{1}{\left(1+e^{2 u}\right)} e^{u} \\
& \therefore \quad g^{\prime}(u)>0
\end{aligned}
$$

Hence, monotonically increasing in $(-\infty, \infty)$
Now $g(-u)=2 \tan ^{-1}\left(e^{(-u)}\right)-\frac{\pi}{2}$

$$
\begin{aligned}
& =2 \tan ^{-1}\left(\frac{1}{e^{u}}\right)-\frac{\pi}{2} \\
& =2 \cot ^{-1}\left(e^{u}\right)-\frac{\pi}{2}
\end{aligned}
$$

$$
\begin{array}{ll}
& =2\left(\frac{\pi}{2}-\tan ^{-1}\left(e^{u}\right)\right)-\frac{\pi}{2} \\
& =\pi-2 \tan ^{-1} e^{u}-\frac{\pi}{2} \\
& =-2 \tan ^{-1} e^{u}+\frac{\pi}{2} \\
& =-g(u) \\
\text { As } \quad \begin{array}{l}
g(-u)=-g(u) \\
\text { Hence } g(u) \text { is odd function }
\end{array}
\end{array}
$$

SECTION - II

Reasoning Type
This section contains 4 reasoning type questions. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.
10. Let a, b, c, p, q be real numbers. Suppose α, β are the roots of the equation $x^{2}+2 p x+q=0$ and $\alpha, \frac{\beta}{2}$ are the roots of the equation $a x^{2}+2 b x+c=0$, where $\beta^{2} \notin\{-1,0,1\}$.

STATEMENT-1: $\quad\left(p^{2}-q\right)\left(b^{2}-a c\right) \geq 0$
and
STATEMENT-2: $\quad \mathrm{b} \neq \mathrm{pa}$ or $\mathrm{c} \neq \mathrm{qa}$
(A) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is a correct explanation for STATEMENT-1
(B) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for STATEMENT-1
(C) STATEMENT-1 is True, STATEMENT-2 is False
(D) STATEMENT-1 is False, STATEMENT-2 is True

Sol. (A) According to condition $\beta^{2} \notin\{1,0,-1\} \quad \alpha, \beta$ both real

$$
\begin{aligned}
& \Rightarrow D_{1} \geq 0, D_{2} \geq 0 \\
& \Rightarrow D_{1} \times D_{2} \geq 0
\end{aligned}
$$

$\& b \neq p a, c \neq q a$
11. Consider
$L_{1}: 2 x+3 y+p-3=0$
$L_{2}: 2 x+3 y+p+3=0$
where p is a real number, and $C: x^{2}+y^{2}+6 x-10 y+30=0$.
STATEMENT-1: In line L_{1} is a chord of circle C, then line L_{2} is not always a diameter of circle C.
and
STATEMENT-2: In line L_{1} is a diameter of circle C, then line L_{2} is not a chord of circle C.
(A) STATEMENT- 1 is True, STATEMENT-2 is True; STATEMENT-2 is a correct explanation for STATEMENT-1
(B) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for STATEMENT-1
(C) STATEMENT-1 is True, STATEMENT-2 is False
(D) STATEMENT-1 is False, STATEMENT-2 is True

Sol. (C) If L_{1} is the diameter then $p=-6$
L_{2} becomes $2 x+3 y-3=0$
Now distance of $(-3,5)$ From L_{2} is
$\left|\frac{-6+15-3}{\sqrt{13}}\right|=\frac{6}{\sqrt{13}}<2$
$\Rightarrow L_{2}$ is chord
12. Let a solution $\mathrm{y}=\mathrm{y}(\mathrm{x})$ of the differential equation $\mathrm{x} \sqrt{\mathrm{x}^{2}-1} \mathrm{dy}-\mathrm{y} \sqrt{\mathrm{y}^{2}-1} \mathrm{dx}=0$ satisfy $\mathrm{y}(2)=\frac{2}{\sqrt{3}}$. STATEMENT-1 : $\quad y(x)=\sec \left(\sec ^{-1} x-\frac{\pi}{6}\right)$ and

STATEMENT-2 : $\mathrm{y}(\mathrm{x})$ is given by $\frac{1}{\mathrm{y}}=\frac{2 \sqrt{3}}{\mathrm{x}}-\sqrt{1-\frac{1}{\mathrm{x}^{2}}}$
(A) STATEMENT- 1 is True, STATEMENT-2 is True; STATEMENT-2 is a correct explanation for STATEMENT-1
(B) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for STATEMENT-1
(C) STATEMENT-1 is True, STATEMENT-2 is False
(D) STATEMENT-1 is False, STATEMENT-2 is True

Sol.
(C) $\frac{1}{y}=\cos \left(\sec ^{-1} x-\frac{\pi}{6}\right)$

$$
=\frac{\sqrt{3}}{2 x}+\frac{1}{2} \sqrt{1-\frac{1}{x^{2}}}
$$

13. Suppose four distinct positive numbers $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}$ are in G.P. Let $\mathrm{b}_{1}=\mathrm{a}_{1}, \mathrm{~b}_{2}=\mathrm{b}_{1}+\mathrm{a}_{2}, \mathrm{~b}_{3}=\mathrm{b}_{2}+$ a_{3} and $\mathrm{b}_{4}=\mathrm{b}_{3}+\mathrm{a}_{4}$.
STATEMENT-1: The numbers $\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}, \mathrm{~b}_{4}$ are neither in A.P. nor in G.P.
and
STATEMENT-2: The numbers $b_{1}, b_{2}, b_{3}, b_{4}$ are in H.P.
(A) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is a correct explanation for STATEMENT-1
(B) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for STATEMENT-1
(C) STATEMENT-1 is True, STATEMENT-2 is False
(D) STATEMENT-1 is False, STATEMENT-2 is True

Sol. (C) Let $a_{1}=1, a_{2}=2, a_{3}=4, a_{4}=8$

$$
b_{1}=1, b_{2}=3, b_{3}=7, b_{4}=15
$$

SECTION - III

Linked Comprehension Type

This section contains 2 paragraphs. Based upon each paragraph, 3 multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

Paragraph for Questions Nos. 14 to 16.

Consider the lines

$$
\begin{aligned}
& L_{1}: \frac{x+1}{3}=\frac{y+2}{1}=\frac{z+1}{2} \\
& L_{2}: \frac{x-2}{1}=\frac{y+2}{2}=\frac{z-3}{3}
\end{aligned}
$$

14. The unit vector perpendicular to both L_{1} and L_{2} is
(A) $\frac{-\hat{i}+7 \hat{j}+7 \hat{k}}{\sqrt{99}}$
(B) $\frac{-\hat{i}-7 \hat{j}+5 \hat{k}}{5 \sqrt{3}}$
(C) $\frac{-\hat{i}+7 \hat{j}+5 \hat{k}}{5 \sqrt{3}}$
(D) $\frac{7 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}-\hat{\mathrm{k}}}{\sqrt{99}}$

Sol. (B) $\quad \vec{b}_{1}=3 \hat{i}+\hat{j}+2 \hat{k}$

$$
\vec{b}_{2}=\hat{i}+2 \hat{j}+3 \hat{k}
$$

$$
\overrightarrow{\mathrm{b}}_{1} \times \overrightarrow{\mathrm{b}}_{2}=\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
3 & 1 & 2 \\
1 & 2 & 3
\end{array}\right|
$$

$$
=\hat{\mathrm{i}}(3-4)-\hat{\mathrm{j}}(9-2)+\hat{\mathrm{k}}(6-1)
$$

\therefore Unit vector $\quad=\frac{-\hat{i}-7 \hat{j}+5 \hat{k}}{\sqrt{1+49+25}}$
$\frac{-\hat{i}-7 \hat{j}+5 \hat{k}}{\sqrt{75}}$
a CAREER LAUNCHER PROGRAM
15. The shortest distance between L_{1} and L_{2} is
(A) 0
(B) $\frac{17}{\sqrt{3}}$
(C) $\frac{41}{5 \sqrt{3}}$
(D) $\frac{17}{5 \sqrt{3}}$

Sol. (D) $\quad \vec{a}_{2}-\vec{a}_{1}(1+2) \hat{i}+(2-2) \hat{j}+(1+31 \hat{x})$

$$
=3 \hat{i}+0 \hat{j}+4 \hat{u}
$$

$\left(a_{2}-a_{1}\right) \cdot\left(a_{1} \times a_{2}\right)\left|\begin{array}{lll}3 & 0 & 4 \\ 3 & 1 & 2 \\ 1 & 2 & 3\end{array}\right|$

$$
3(3-4)+4(6-1)
$$

$$
-3+20=17
$$

$$
S . D=\frac{17}{\sqrt{75}}
$$

16. The distance of the point $(1,1,1)$ from the plane passing through the point ($-1,-2,-1$) and whose normal is perpendicular to both the lines L_{1} and L_{2} is
(A) $\frac{2}{\sqrt{75}}$
(B) $\frac{7}{\sqrt{75}}$
(C) $\frac{13}{\sqrt{75}}$
(D) $\frac{23}{\sqrt{75}}$

Sol. (C) $a(x+1)+b(y+2)+c(2+1)=0$
\therefore O Normal of plane is perpendicular to line
$\Rightarrow \begin{array}{r}3 a+b+2 c=0 \\ a+2 b+3 c=0\end{array}$
$\frac{a}{3-4}=\frac{b}{2-9}=\frac{c}{6-1}$
$\frac{a}{-1}=\frac{b}{-7}=\frac{c}{5}$
\therefore Equation of plane is

$$
\begin{aligned}
& -(x+1)-7(y+2)+5(z+1)=0 \\
& -x-1-7 y-14+5 z+5=0 \\
& -x-7 y+5 z-10=0
\end{aligned}
$$

$$
\frac{|-1-7+5-10|}{\sqrt{1+49+25}}=\frac{13}{\sqrt{75}}
$$

Paragraph for Question Nos. 17 to 19

Consider the function $f:(-\infty, \infty) \rightarrow(-\infty, \infty)$ defined by

$$
f(x)=\frac{x^{2}-a x+1}{x^{2}+a x+1}, 0<a<2
$$

17. Which of the following is true?
(A) $(2+a)^{2} f^{\prime \prime}(1)+(2-a)^{2} f^{\prime \prime}(-1)=0$
(B) $(2-a)^{2} f^{\prime \prime}(1)-(2+a)^{2} f^{\prime \prime}(-1)=0$
(C) $f^{\prime}(1) f^{\prime}(-1)=(2-a)^{2}$
(D) $f^{\prime}(1) f^{\prime}(-1)=-(2+a)^{2}$

Sol. (A) $f(x)=\frac{x^{2}-a x+1}{x^{2}+a x+1}, 0<a<2$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{(2 x-a)\left(x^{2}+a x+1\right)-(2 x+a)\left(x^{2}-a x+1\right)}{\left(x^{2}+a x+1\right)^{2}} \\
& f^{\prime}(x)=\frac{2 a\left(x^{2}-1\right)}{\left(x^{2}+a x+1\right)} f^{\prime}(1)=f^{\prime}(-1)=0 \\
& f^{\prime}(x)\left(x^{2}+a x+1\right)^{2}-2 a\left(x^{2}-1\right)=0 \\
& f^{\prime \prime}(x)\left(x^{2}+a x+1\right)^{2}+f^{\prime}(x)\left(x^{2}+a x+1\right)(2 x+a)-4 a x=0 \\
& f^{\prime \prime}(1)(2+a)^{2}=4 a \\
& f^{\prime \prime}(-1)(2-a)^{2}=-4 a \\
& f^{\prime \prime}(1)(2+a)^{2}+f(-1)(2-a)^{2}=0
\end{aligned}
$$

$\therefore(A)$ is correct

18. Which of the following is true?
(A) $f(x)$ is decreasing on $(-1,1)$ and has a local minimum at $x=1$
(B) $f(x)$ is increasing on $(-1,1)$ and has a local maximum at $x=1$
(C) $f(x)$ is increasing on $(-1,1)$ but has neither a local maximum nor a local minimum at $x=1$
(D) $f(x)$ is decreasing on $(-1,1)$ but has neither a local maximum nor a local minimum at $x=1$

Sol. (A) $\quad f(x)=\frac{2 a\left(x^{2}-1\right)}{\left(x^{2}+a x+1\right)^{2}}$

$x=1$, Minima hence option (A) is correct
19. Let $g(x)=\int_{0}^{e^{x}} \frac{f^{\prime}(t)}{1+t^{2}} d t$

Which of the following is true?
(A) $g^{\prime}(x)$ is positive on $(-\infty, 0)$ and negative on $(0, \infty)$
(B) $g^{\prime}(x)$ is negative on $(-\infty, 0)$ and positive on $(0, \infty)$
(C) $g^{\prime}(x)$ changes sign on both $(-\infty, 0)$ and $(0, \infty)$
(D) $g^{\prime}(x)$ does not changes sign on $(-\infty, \infty)$

Sol. (B) $\quad g(x)=\int_{0}^{e^{x}} \frac{f^{\prime}(t)}{1+t^{2}} d t$

$$
\begin{aligned}
& g^{\prime}(x)=e^{x} \cdot \frac{f^{\prime}\left(e^{x}\right)}{1+c^{2 x}} \\
& =e^{x} \cdot \frac{2 a\left(e^{2 x}-1\right)}{1+e^{2 x}}
\end{aligned}
$$

when $x>0, \quad g^{\prime}(x)>0$

$$
x<0, \quad g^{\prime}(x)<0
$$

SECTION - IV

Matrix Match Type

The section contains 3 questions. Each question contains statements given in two columns, which have to be matched. Statements in Column I are labelled as A, B, C and D whereas statements in Columns II are labelled as p, q, r and s. The answers to these questions have to be appropriately bubbled as illustrated in the following example.
If the correct matches are A-q, A-r, B-p, B-s, C-r, C-s and D-q, then the correctly bubbled matrix will look like the following:

20. Match the Statements / Expressions in Column I with the Statements / Expressions in Column II and indicate your answer by darkening the approprite bubbles in the 4×4 matrix given in the ORS.

Column II

(A) The minimum value of $\frac{x^{2}+2 x+4}{x+2}$ is
(B) Let A and B be 3×3 matrices of real numbers, where A is symmetric, B is key-symmetric, and

$$
(A+B)(A-B)=(A-B)(A+B) . \text { If }(A B)^{t}=(-1)^{k} A B
$$

where $(A B)^{t}$ is the transpose of the matrix $A B$, then the possible values of k are
(C) Let $a=\log _{3} \log _{3} 2$. An integer k satisfying $1<2^{\left(-k+3^{-a}\right)}<2^{\text {, }}$ must be less than
(D) If $\sin \theta=\cos \phi$, then the possible value of $\frac{1}{\pi}\left(\theta \pm \varphi-\frac{\pi}{2}\right)$ are
(s) 3

Sol. $\quad A \rightarrow r, B \rightarrow q, s, C \rightarrow r, s, D \rightarrow p, r$
(A) $f(x)=\frac{x^{2}+2 x 4}{x+2}$
$f^{\prime}(x)=0 \rightarrow x=0,-4$
$x=0$ is local minima
$f(0)=2$
(B) q, s
$A^{\prime}=A, B^{\prime}=-B, A B=B A$
$(A B)^{t}=B^{t} A^{t}=-B A=(-1)^{k} A B$
$\Rightarrow(-1)^{K}=-1 \Rightarrow \mathrm{~K}=1,3$
(C) r, s

$$
\begin{aligned}
& 2^{0}<2^{-k+3^{-a}}<2^{1} \\
& 0<-k+\log _{2} 3<1 \\
& \log _{2} 3-1<k<\log _{z} 3 \Rightarrow k=1
\end{aligned}
$$

(D) p ,
$r \sin \theta=\cos \phi \Rightarrow \frac{\pi}{2}-\theta=2 n \pi \pm \phi \Rightarrow \frac{1}{\pi}\left(\theta \pm \phi-\frac{\pi}{2}\right)=-2 n$
21. Consider all possible permutations of the letters of the word ENDEANOEL Match the Statements / Expressions in Column I with the Statements / Expressions in Column II and indicate your answer by darkening the approprite bubbles in the 4×4 matrix given in the ORS.

Column II

(A) The number of permutations containing the world ENDDEA is
(B) The number of permutations in which the letter E occurs in the first and the last positions is
(C) The number of permutations in which none of the letters D, L, N occurs in the last five positions is
(D) The number of permutations in which the letters A, E, O occur only in odd positions is

Sol. A-p; B-s; C-q;D-q
ENDEANOEL has 3E'S, 2N'S.
(A) The number of permutations containing the word ENDEA?

Consider ENDEA as a group. There are 4 other different letters. Hence total number of permutation = 5! (ie P)
(B) The first and last letters are E .

The Number of ways of permutes the letters from $2^{\text {nd }}$ to $8^{\text {th }}$ position is $\frac{7!}{2!}=21 \times 5$!. (ie. s)
(C) The letters that cannot be in the last 5 positions are are D,L,N.

Hence they have to be arranged in the 1 st four position and the rest in the last 5 position. This can be done in

$$
\begin{equation*}
\left(\frac{4!}{2!}\right) \times\left(\frac{5!}{3!}\right)=2 \times 5! \tag{ieq}
\end{equation*}
$$

(D) The odd position are 1, 3, 5, 7 and q. A, E, O are only in odd position and the rest in even positions.

This can be done in $\left(\frac{5!}{3!}\right) \times \frac{4!}{2!}=2 \times 5!\quad$ (ie q)
22. Consider the lines given by

$$
\begin{aligned}
& L_{1}: x+3 y-5=0 \\
& L_{2}: 3 x-k y-1=0 \\
& L_{3}: 5 x+2 y-12=0
\end{aligned}
$$

Match the Statements / Expressions in Column I with the Statements / Expressions in Column II and indicate your answer by darkening the approprite bubbles in the 4×4 matrix given in the ORS.

Column II

(A) L_{1}, L_{2}, L_{3} are concurrent, if
(B) One of L_{1}, L_{2}, L_{3} is parallel to at least one of the other two, if
(C) L_{1}, L_{2}, L_{3} form a triangle, if
(D) L_{1}, L_{2}, L_{3} do not form a triangle, if
$A \rightarrow s, B \rightarrow p, q, C \rightarrow r, D \rightarrow p, q, s$
$L_{1}: x+3 y-5=0$
$\mathrm{L}_{2}: 3 x-k y-1=0$
$L_{3}: 5 x+2 y-12=0$
L_{1}, L_{3} interest at $(2,1)$
(A) For L_{1}, L_{2}, L_{3} to be concurrent $3 x-k y-1=0$
(S) must pass through (2, 1). Hence $K=5$ (ie s)
(B) One of L_{1}, L_{2}, L_{3} to parallel to atleast one of the other two L_{1}, L_{3} are not parallel. So L_{2} has to be either parallel to L_{1} or to L_{3}.

Slope of $L_{1}=-\frac{1}{3} ; L_{3}=-\frac{5}{2}$
Hence Slope of $L_{2}=-\frac{1}{3}$ if $K=-9 \rightarrow P$ or slope of $L_{2}=-\frac{5}{2}$ if $K=-\frac{6}{5} \rightarrow q$
(C) L_{1}, L_{2}, L_{3} to form a triangle they must not be concurrent or $L 2$ cannot be parallel to either L_{1} or L_{3}.
Hence only possibility is $K=-\frac{6}{5} \rightarrow r$
(D) L_{1}, L_{2}, L_{3} cannot form a triangle if $K=5$ or -9 or $-\frac{6}{5} P$, q, or S

PHYSICS

PART II

SECTIONS - I

Straight Objective Type

This section contains 9 multiple choice questions. Each questions has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.
23. A light beam is traveling from Region I to Region IV (Refer Figure). The refractive index in Regions I, II, III and IV are $n_{0}, \frac{n_{0}}{6}$ and $\frac{n_{0}}{8}$, respectively. The angle of incidence θ for which the beam just misses entering Region IV is
Figure:

(A) $\sin ^{-1}\left(\frac{3}{4}\right)$
(B) $\sin ^{-1}\left(\frac{1}{8}\right)$
(C) $\sin ^{-1}\left(\frac{1}{4}\right)$
(D) $\sin ^{-1}\left(\frac{1}{3}\right)$

Sol. (B)
If the angle of incidence between Regions III and IV be ϕ, then

$$
\begin{aligned}
& \frac{\mathrm{n}_{0}}{6} \sin \phi=\frac{\mathrm{n}_{0}}{8} \sin 90^{\circ} \\
& \Rightarrow \sin \phi=\frac{3}{4}
\end{aligned}
$$

Let the angle of incidence between Regions II and III be α. Then
$\frac{n_{0}}{2} \sin \alpha=\frac{n_{0}}{6} \sin \phi$
$\Rightarrow \sin \alpha=\frac{\sin \phi}{3}$
But $n_{0} \sin \theta=\frac{n_{0}}{2} \sin \alpha$
$\therefore \sin \theta=\frac{\sin \alpha}{2}=\frac{\sin \phi}{6}=\frac{1}{8}$
$\therefore \theta=\sin ^{-1}\left(\frac{1}{8}\right)$
24. A vibrating string of certain length ℓ under a tension T resonates with a mode corresponding to the first overtone (third harmonic) of an air column of length 75 cm inside a tube closed at one end. The string also generates 4 beats per second when excited along with a tuning fork of frequency n. Now when the tension of the string is slightly increased the number of beats reduces to 2 per second. Assuming the velocity of sound in air to be $340 \mathrm{~m} / \mathrm{s}$ the frequency n of the tuning fork in Hz is
(a) 344
(B) 336
(C) 117.3
(D) 109.3

Sol. (A)
Third harmonic in closed pipe:
$\mathrm{f}=\frac{3 \mathrm{v}}{4 \mathrm{~L}}=\frac{3 \times 340}{4 \times 0.75}=340 \mathrm{~Hz}$
The string has the same frequency on increasing T, f increases and the number of beats with n decreases. Hence $n-340=4$
$\therefore \mathrm{n}=344 \mathrm{~Hz}$
25. A parallel plate capacitor C with plates of unit area and separation s is filled with a liquid of dielectric constant $K=2$. The level of liquid is $\frac{d}{3}$ initially. Suppose the liquid level decreases at a constant speed V , the time constant as a function of time t is
Figure

(A) $\frac{6 \varepsilon_{0} R}{5 d+3 V t}$
(B) $\frac{(15 d+9 V t) \varepsilon_{0} R}{2 d^{2}-3 d V t-9 V^{2} t^{2}}$
(C) $\frac{6 \varepsilon_{0} R}{5 d-3 V t}$
(D) $\frac{(15 d-9 V t) \varepsilon_{0} R}{2 d^{2}+3 d V t-9 V^{2} t^{2}}$

Sol. (A)
The capacitance is given by

$$
\begin{aligned}
& C=\frac{t_{0}}{\left[d-\left(\frac{d}{3}-V t\right)\right]+\frac{1}{2}\left(\frac{d}{3}-V t\right)} \\
& =\frac{6 \varepsilon_{0}}{5 d+3 V t}
\end{aligned}
$$

Time constant $=R C=\frac{6 \varepsilon_{0} R}{5 d+3 V t}$
26. A bob of mass M is suspended by a massless string of length L. The horizontal velocity V at position A is just sufficient to make it reach the point B. The angle θ at which the speed of the bob is half of that at A, satisfies
Figure :

(A) $\theta=\frac{\pi}{4}$
(B) $\frac{\pi}{4}<\theta<\frac{\pi}{2}$
(C) $\frac{\pi}{2}<\theta<\frac{3 \pi}{4}$
(D) $\frac{3 \pi}{4}<\theta<\pi$

Sol. (D)

$$
V=\sqrt{5 \mathrm{gL}}
$$

Since mechanical energy is conserved,
$\frac{1}{2} m(5 g L)=\frac{1}{2} m\left(\frac{5 g L}{4}\right)+m g h$
$\Rightarrow h=\frac{15 L}{8}=L+\frac{7 L}{8}$
$\Rightarrow L(1-\cos \theta)=L\left(1+\frac{7}{8}\right)$
Clearly, $-1<\cos \theta<-\frac{1}{\sqrt{2}}$
$\Rightarrow \frac{3 \pi}{4}<\theta<\pi$
27. A glass tube of uniform internal radius (r) has a valve separating the two identical ends. Initially, the valve is in a tightly closed position. End 1 has a hemispherical soap bubble of radius r. End 2 has sub-hemispherical soap bubble as shown in figure. Just after opening the valve,
Figure:

(A) air from end 1 flows towards end 2. No change in the volume of the soap bubbles
(B) air from end 1 flows towards end 2 . Volume of the soap bubble at end 1 decreases
(C) no change occurs
(D) air from end 2 flows towards end 1 . Volume of hte soap bubble at end 1 increases

Sol. (B)
Let the radius of the bubble at end 2 be R. Then $R>r$.
Now, $P_{2}-P_{0}=\frac{4 T}{R}$
$\Rightarrow P_{2}=P_{0}+\frac{4 T}{R}$
And, $P_{1}-P_{0}=\frac{4 T}{r}$
$\Rightarrow P_{1}=P_{0}+\frac{4 T}{r}$
$\therefore \mathrm{P}_{1}>\mathrm{P}_{2}$
\Rightarrow Air will flow from end 1 to 2 , and as a result volume at end 1 decreases.
28. A block (B) attached to two unstretched springs $S 1$ and $S 2$ with spring constants k and $4 k$, respectively (see figure 1). The other ends are attached to identical supports M1 and M2 not attached to hte walls. The springs and supports have negligible mass. There is no friction anywhere. The block B is displaced towards wall 1 by a small distance x (figure II) and released. The block returns and moves a maximum distance y towards wall 2 . Displacements x and y are measured with respect to hte equilibrium position of the block B. The ratio $\frac{y}{x}$ is
Figure :

(A) 4
(B) 2
(C) $\frac{1}{2}$
(D) $\frac{1}{4}$

Sol. (C)
Energy of the system ($\mathrm{B}+$ springs) will be conserved.
$\therefore \frac{1}{2} K x^{2}=\frac{1}{2}(4 K) y^{2}$
$x=2 y$
$\therefore \frac{\mathrm{y}}{\mathrm{x}}=\frac{1}{2}$
29. A transverse sinusoidal wave moves along a string in the positive x-direction at a speed of $10 \mathrm{~cm} /$ s . The wavelength of the wave is 0.5 m and its amplitude is 10 cm . At a particular time t , the snapshot of the wave is shown in figure. The velocity of point P when its displacement is 5 cm is Figure :

(A) $\frac{\sqrt{3} \pi}{50} \hat{j} \mathrm{~m} / \mathrm{s}$
(B) $-\frac{\sqrt{3} \pi}{50} \hat{j} \mathrm{~m} / \mathrm{s}$
(C) $\frac{\sqrt{3} \pi}{50} \hat{i} \mathrm{~m} / \mathrm{s}$
(D) $-\frac{\sqrt{3} \pi}{50} \hat{i} \mathrm{~m} / \mathrm{s}$

Sol. (A)
$\mathrm{K}=\frac{2 \pi}{\lambda}=4 \pi \mathrm{rad} / \mathrm{m}$
$\omega=\mathrm{Kv}=4 \pi \cdot 0.1=0.4 \pi \mathrm{rad} / \mathrm{s}$
$\therefore \mathrm{y}=0.1 \sin (4 \pi \mathrm{x}-0.4 \pi \mathrm{t})$
Suppose the snapshot shown is at $t=0$.
$\therefore y=0.1 \sin (4 \pi x)$
For P ,
$0.05=0.1 \sin (4 \pi x)$
$\therefore \sin 4 \pi x=0.5$
Now velocity of P :

$$
v=\frac{d y}{d t}=-0.04 \pi \cos (4 \pi x-0.4 \pi t)
$$

At $t=0$,

$$
\begin{aligned}
& v=-0.04 \pi \cos 4 \pi x \\
& =-0.04 \pi(\pm \sqrt{(1-0.25)})=\frac{\pi \sqrt{3}}{50} \quad\left(\because x>\frac{\pi}{2}\right)
\end{aligned}
$$

30. Consider a system of three charges $\frac{q}{3}, \frac{q}{3}$ and $-\frac{2 q}{3}$ placed at points A, B and C, respectively, as shown in the figure. Take O to be the centre of the circle of radius R and angle $C A B=60^{\circ}$ Figure :

(A) The electric field at point O is $\frac{q}{8 \pi \varepsilon_{0} R^{2}}$ directed along the negative x-axis
(B) The potential energy of the system is zero
(C) The magnitude of the force between the charges at C and B is $\frac{q^{2}}{54 \pi \varepsilon_{0} R^{2}}$
(D) The potential at point O is $\frac{q}{12 \pi \varepsilon_{0} R}$

Sol. (C)
Electric field at O :
$E=\frac{2 q / 3}{4 \pi \varepsilon_{0} R^{2}}=\frac{q}{4 \pi \varepsilon_{0} R^{2}}$
$F_{C-B}=\frac{(2 q / 3)(q / 3)}{4 \pi \varepsilon_{0}\left(3 R^{2}\right)}=\frac{q^{2}}{54 \pi \varepsilon_{0} R^{2}}$
31. A radioactive sample S 1 having an activity of $5 \mu \mathrm{Ci}$ has twice the number of nuclei as another sample S 2 which has an activity of $10 \mu \mathrm{Ci}$. The half lives of S 1 and S 2 can be
(A) 20 years and 5 years, respectively
(B) 20 years and 10 years, respectively
(C) 10 years each
(D) 5 years each

Sol. (A)

$$
\begin{aligned}
& 5 \mu \mathrm{Ci}=\lambda(2 \mathrm{~N}) \\
& \text { and } 10 \mu \mathrm{Ci}=\lambda(\mathrm{N}) \\
& \Rightarrow \frac{\lambda_{1}}{\lambda_{2}}=\frac{5}{20}=\frac{1}{4} \\
& \Rightarrow \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}=\frac{4}{1}
\end{aligned}
$$

SECTION - II

Reasoning Type

This section contains 4 reasoning type questions. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct
32. STATEMENT-1

It is easier to pull a heavy object than to push it on a level ground.
and
STATEMENT-1
The magnitude of frictional force depends on the nature of the surfaces in contact.
(A) STATEMENT - 1 is True, STATEMENT - 2 is True; STATEMENT -2 is a correct explanation for STATEMENT-1
(B) STATEMENT -1 is Trure, STATEMENT -2 is True; STATEMENT -2 is NOT a correct explanation for STATEMENT-1
(C) STATEMENT -1 is True, STATEMENT -2 is False
(D) STATEMENT - 1 is False, STATEMENT - 2 is True

Sol.
In pulling case

$\therefore \mathrm{N}+\mathrm{F} \sin \theta=\mathrm{mg}$
$N_{1}=(m g-F \sin \theta)$
In Pushing case

$N_{2}=(F \sin \theta+m g)$
Normal force N_{2} in pushing is more than the normal force N_{1} in pulling.
$\therefore \mathrm{f}=\mu \mathrm{N}$
so if is easier to pull a heavy object than to push
so, statement - I is right \& and of friction force also repel on surface of nature.
Therefore statement (I) \& statement (II) both are right \& statement (II) is not the correct explanation of statement (I)
33. STATEMENT-1

For practical purposes, the earth is used as a reference at zero potential in electrical circuits. and
STATEMENT-2
The electrical potential of a sphere of radius R with charges Q uniformly distributed on the surface is given by $\frac{Q}{4 \pi \varepsilon_{0} R}$.
(A) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is a correct explanation for STATEMENT-1
(B) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for STATEMENT-1
(C) STATEMENT-1 is True, STATEMENT-2 is False
(D) STATEMENT-1 is False, STATEMENT-2 is True

Sol.
Both the statements are true, \& statement (II) is not the correct explanation of statement (I).
Because, whatever be the value of potential we can assign it zero as a reference.
34. STATEMENT-1

The sensitivity of a moving-coil galvanometer is increased by placing a suitable magnetic material as a core inside the coil.
and
STATEMENT-2
Soft iron has a high magnetic permeability and cannot be easily mangetized or demagnetized.
(A) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is a correct explanation for STATEMENT-1
(B) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for STATEMENT-1
(C) STATEMENT-1 is True, STATEMENT-2 is False
(D) STATEMENT-1 is False, STATEMENT-2 is True

Sol.
Sensitivity $=\left(\frac{\text { range of output }}{\text { range of Input }}\right)$
By placing suitable magnetic material as a were inside the coil, the magnetic moment of the coil will increase so, torque $\vec{\tau}$ which is equal to $M B \sin \theta$ will increase.
That's why we will find more range of output for a given range of input in a galvanometer.
\therefore Statement (I) is correct
Highly permeable magnetic material easily magnetized \& easily demagnetise.
\therefore Statement (II) is wrong.
35. STATEMENT-1

For an observer looking out through the window of a fast moving train, the nearby objects appear to move in the opposite direction to the train, while the distant objects appear to be stationary.
and
STATEMENT-2
If the observer and the object are moving at velocities $\overrightarrow{\mathrm{V}}_{1}$ and $\overrightarrow{\mathrm{V}}_{2}$ respectively with reference to a laboratory frame, the velocity of the object with respect to the observer is $\overrightarrow{V_{2}}-\overrightarrow{V_{1}}$.
(A) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is a correct explanation for STATEMENT-1
(B) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for STATEMENT-1
(C) STATEMENT-1 is True, STATEMENT-2 is False
(D) STATEMENT-1 is False, STATEMENT-2 is True

Sol.

y = Distance in between observer \& object
$\mathrm{d}=$ relative displacement between observer \& object
$\tan \theta=\left[\frac{d}{y}\right]$
If y is very large , then angle subtended by displacement d in a given time is very small as compare to nearer object.
so statement (I) is correct.
Now, observer velocity w,r.t laboratory frame $=\mathrm{V}_{1}$
\& object" " " = V
\therefore Velocity of the object w.r.t observer $\overrightarrow{\mathrm{V}}_{21}=\overrightarrow{\mathrm{V}}_{2}-\overrightarrow{\mathrm{V}}_{1}$
so statement (II) is also correct.

SECTION -III

Linked Comprehension Type

This section contains 2 paragraphs. Based upon each paragraph, 3 multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.

Paragraph for Questions Nos. 36 to 38

A uniform thin cylindrical disk of mass M and radius R is attached to two id enthical massless springs of spring constant k which are fixed to the wall as shown in the figure. The springs are attached to hte axle of hte disk symmetrically on either side at a distance d from its centre. The axle is massless and both the springs and the axle are in a horizontal plane. The unstretched length of each spring is L. The disk is initially at its equilibrium position with its centre of mass (CM) at a distance L from the wall. The disk rolls without slipping with velocity $\overrightarrow{V_{0}}=V_{0} \hat{i}$. The coefficient of friction is μ.
Figure :

36. The net external force acting on the disk when its centre of mass is at displacement x with respect to its equilibrium position is
(A) kx
(B) -2 kx
(C) $-\frac{2 k x}{3}$
(D) $-\frac{4 k x}{3}$

Sol.
for translational motion

$2 k x-F=M a$ \qquad
for rotational motion
$\mathrm{FR}=\mathrm{l} \alpha=\frac{\mathrm{MR}^{2}}{2}\left(\frac{\mathrm{a}}{\mathrm{R}}\right)$
from (1) and (2) $F=\frac{m a}{2}$
$a=-\frac{4 k x}{3 m}$
Force $=\mathrm{Ma}=-\frac{4 \mathrm{kx}}{3 \mathrm{~m}}$
37. The centre of mass of the disk undergoes simple harmonic motion with angular frequency ω equal to
(A) $\sqrt{\frac{k}{M}}$
(B) $\sqrt{\frac{2 k}{M}}$
(C) $\sqrt{\frac{2 k}{3 M}}$
(D) $\sqrt{\frac{4 \mathrm{k}}{3 M}}$

Sol. (D)
From the above question it is evident that net restoring force

$$
\begin{aligned}
& F=-\frac{4 k x}{3 M} \\
& \therefore \omega=\sqrt{\frac{4 k}{M}}
\end{aligned}
$$

38. The maximum value of V_{0} for which the disk will roll without slipping is
(A) $\mu g \sqrt{\frac{M}{k}}$
(B) $\mu g \sqrt{\frac{M}{2 k}}$
(C) $\mu g \sqrt{\frac{3 M}{k}}$
(D) $\mu g \sqrt{\frac{5 \mathrm{M}}{2 k}}$

Sol. (C)

$2 \mathrm{kx}-\mathrm{f}=\mathrm{Ma}_{\mathrm{cm}}$
$\mathrm{fR}=\frac{\mathrm{MR}^{2}}{2}\left(\frac{\mathrm{a}_{\mathrm{CM}}}{\mathrm{R}}\right)$
$f=\frac{M a_{C M}}{2}$
for slipping to start f should have its maximum value i.e, static friction
$\mathrm{f}=\frac{\mathrm{Ma}_{\mathrm{CM}}}{2}=\mu \mathrm{Mg}$
$\mathrm{f}=2 \mu \mathrm{gM} \Rightarrow \mathrm{a}_{\mathrm{CM}}=2 \mu \mathrm{~g}$
we know $\mathrm{a}_{\mathrm{CM}}=\frac{4 \mathrm{kx}}{3 \mathrm{~m}}$
$\therefore \frac{4 \mathrm{kx}}{3 \mathrm{~m}}=2 \mu \mathrm{~g}$
$x=\frac{6 \mu M g}{4 k}$
hence at this x slipping will start the velocity required to attain this displacement is
$\left.2 \times \frac{1}{2} k x^{2}=\frac{1}{2} m v^{2}+\frac{1}{2} \right\rvert\, \omega^{2}$
$K\left(\frac{6 \mu M g}{4 k}\right)^{2}=m v^{2}+\frac{M R^{2}}{2} \frac{v^{2}}{R^{2}}$
$v=\mu g \sqrt{\frac{3 M}{k}}$

Paragraph for Question Nos. 39 to 41

The nuclear charges (Ze) is non-uniformly distributed within a nucleus of radius R . The charge density $\rho(r)$ [charge per unit volume] is dependent only on the radial distance r form the centre of the nucleus as shown in figure. The electric field is only along the radial direction.
Figure:

39. The electric field at $r=R$ is
(A) independent of a
(B) directly proportional to a
(B) directly proportional to a^{2}
(D) inversely proportional to a

Sol. (A)
At $r=R$,
From Guass law,
E. $4 \pi R^{2}=\frac{\text { qen }}{t_{0}}=\frac{Z_{e}}{t_{0}}$
$\Rightarrow E=\frac{\mathrm{Ze}}{4 \pi \mathrm{t}_{0} \mathrm{R}^{2}}$
E is independent of a.
40. For $\mathrm{a}=0$, the value of d (maximum value of ρ as shown in the figure) is
(A) $\frac{3 Z e}{4 \pi R^{3}}$
(B) $\frac{3 Z e}{\pi R^{3}}$
(C) $\frac{4 Z e}{3 \pi R^{3}}$
(D) $\frac{\mathrm{Ze}}{3 \pi \mathrm{R}^{3}}$

Sol. (B)

$$
\rho(r)=-\frac{d r}{R}+d
$$

\therefore The charge inside the nucleus,

$$
Z e=\int_{0}^{R} \rho(r) \cdot 4 \pi r^{2} d r
$$

$\Rightarrow Z e=\int_{0}^{R}\left\{\left(-\frac{d}{R} \cdot r+d\right) 4 \pi r^{2}\right\} d r$
$=4 \pi\left[-\frac{\mathrm{d}}{\mathrm{R}} \cdot \frac{\mathrm{r}^{4}}{4}+\mathrm{d} \cdot \frac{\mathrm{r}^{3}}{3}\right]_{0}^{\mathrm{R}}$
$=4 \pi \mathrm{~d}\left[-\frac{R^{3}}{4}+\frac{R^{3}}{3}\right]$
or, $\mathrm{Ze}=\frac{\pi \mathrm{dR}^{3}}{3}$
$\Rightarrow d=\frac{3 Z e}{\pi R^{3}}$
41. The electric field within the nucleus is generally observed to be linearly dependent on r. This implies
(A) $a=0$
(B) $a=\frac{R}{2}$
(C) $a=R$
(D) $a=\frac{2 R}{3}$

Sol. (C)
Electric field within the nucleus is linearly dependent on r is possible when the charge distribution is uniform.
$\therefore \mathrm{a}=\mathrm{R}$
E. $4 \pi r^{2}=\frac{\text { qen }}{t_{0}}=\frac{\text { d. } \frac{4}{3} \pi r^{2}}{t_{0}}$
$\Rightarrow E=\left(\frac{1}{3 t_{0}} d\right) r$
$E \propto r$

SECTION - IV

Matrix Match Type

The section contains 3 questions. Each question contains statements given in two columns, which have to be matched. Statements in Column I are labelled as A, B, C and D whereas statements in Columns II are labelled as p, q, r and s. The answers to these questions have to be appropriately bubbled as illustrated in the following example.
If the correct matches are A-q, A-r, B-p, B-s, C-r, C-s and D-q, then the correctly bubbled matrix will look like the following:

42. An optical component and an object S placed along its optic axis are given in Column I. The distance between the object and the component can be varied. The properties of images are given in Column II. Match all the properties of images from Column II. Match all the properties of images from Column II with the appropriate components given in Column I. Indicate your answer by darkening the appropriate bubbles of the 4×4 matrix given in the ORS.

Column I

Column II
(A)

(p) Real image
(B)

(q) Virtual image
(C)

(r) Magnified image
(s) Image at infinity

Sol.
(A) PQRS
(B) Q
(C) PQRS
(D) PQRS
43. Column I contains a list of processes involving expansion of an ideal gas. Match this with Column II describing the thermodynamic change during this process. Indicate your answer by darkening the appropriate bubbles of the 4×4 matrix given in the ORS.

Column I

(A) An insulated container has two chambers separated by a value. Chamber I contains an ideal gas and the Chamber II has vacuum. The valve is opened.

(B) An ideal monatomic gas expands to twice its original volume such that its pressure $\mathrm{P} \propto \frac{1}{\mathrm{~V}^{2}}$, where V is the volume of the gas

Column II

(p) The temperature of the gas decreases
(C) An ideal monatomic gas expands to twice its original volume such that its pressure $\mathrm{P} \propto \frac{1}{\mathrm{~V}^{4 / 3}}$, where V is its volume (D) An ideal monatomic gas expands such that its pressure P and volume V follows the behavior shown in the graph

Sol. $\quad \mathrm{A} \rightarrow \mathrm{q}$
$B \rightarrow p, r$
$C \rightarrow p, s$
$D \rightarrow q, s$
(A) Free expansion under adiabatic conditions
$\Rightarrow \Delta Q=0 \quad \& \Delta Q=0$
Hence $\Delta U=0$
\Rightarrow T remains constant
(B) $\mathrm{P} \propto \frac{1}{\mathrm{~V}^{2}}$ or $\mathrm{P}=\frac{\mathrm{k}}{\mathrm{V}^{2}}$
$P V=n R T$
or $\frac{K}{V}=n R T$
$\Rightarrow \mathrm{V} \rightarrow 2 \mathrm{~V}$
$\mathrm{T} \rightarrow \frac{\mathrm{T}}{2}$
$\Rightarrow \Delta \mathrm{U}=\frac{3}{2} \mathrm{nR} \Delta \mathrm{T}=-\frac{3 \mathrm{~K}}{4 \mathrm{~V}}$
$\Delta W=\int_{V}^{2 V} P d V=R \int_{V}^{2 V} \frac{d V}{V^{2}}=\frac{K}{2 V}$
$\Rightarrow \Delta \mathrm{Q}=\Delta \mathrm{U}+\Delta \mathrm{W}<0$
(C) $\mathrm{P} \propto \frac{1}{\mathrm{~V}^{4 / 3}}$

$$
\begin{aligned}
& \mathrm{P}=\frac{\mathrm{K}}{\mathrm{~V}^{4 / 3}} \\
& \Rightarrow \frac{\mathrm{~K}}{\mathrm{~V}^{1 / 3}}=\mathrm{nRT} \\
& \mathrm{~V} \rightarrow 2 \mathrm{~V} \\
& \mathrm{~T} \rightarrow \frac{\mathrm{~T}}{2^{1 / 3}} \\
& \Delta \mathrm{U}=\frac{3}{2} \mathrm{nR} \Delta \mathrm{~T}=\frac{3 \mathrm{~K}}{2 \mathrm{~V}^{1 / 3}}\left[\frac{1}{2^{1 / 3}}-1\right] \\
& \Delta \mathrm{W}=\int_{\mathrm{V}}^{2 \mathrm{~V}} \frac{\mathrm{KdV}}{\mathrm{~V}^{4 / 3}}=\frac{3 \mathrm{~K}}{\mathrm{~V}^{1 / 3}}\left[1-\frac{1}{2^{1 / 3}}\right] \\
& \Rightarrow \Delta \mathrm{Q}=\Delta \mathrm{U}+\Delta \mathrm{W}>0
\end{aligned}
$$

(D)

$$
\begin{aligned}
& \mathrm{PV}=n R T \\
& 2 \mathrm{P}^{\prime} \mathrm{V}=n R T^{\prime} \\
& \Rightarrow \frac{\mathrm{T}^{\prime}}{\mathrm{T}}\left(\frac{2 \mathrm{P}^{\prime}}{\mathrm{P}}\right)>1 \\
& \Delta \mathrm{~W}>0 \text { (area under curve) } \\
& \Delta \mathrm{U}=\frac{3}{2} n R \Delta T=\frac{3}{2} V\left[2 \mathrm{P}^{\prime}-\mathrm{P}\right]>0 \\
& \Rightarrow \Delta \mathrm{Q}=\Delta \mathrm{U}+\Delta \mathrm{W}>0
\end{aligned}
$$

44. Column I give a list of possible set of parameters measured in some experiments. The variations of the parameters in the form of graphs are shown in Column II. Match the set of parameters given in Column I with the graph given in Column II. Indicate your answer by darkening the appropriate bubbles of the 4×4 matrix given in the ORS.

Column I

(A) Potential energy of a simple pendulum (y axis)
as a function of displacement (x axis)

Column II

(q)
(B) Displacement (y axis) as a function of time (x axis)
for a one dimensional motion at zero or constant acceleration when the body is moving along the positive x-direction

(C) Range of a projectile (y axis) as a function of its velocity (x axis) when projected at a fixed angle
(r)

(D) The square of the time period (y axis) of a simple pendulum as a function of its length (x axis)
(s)

$A \rightarrow s$
$B \rightarrow s, q$
Sol. $C \rightarrow s$
D \rightarrow q
(A) $U=m g h$ (reference at lowest point)

$\mathrm{U}-\mathrm{U}_{0}=\mathrm{mgh}$ (reference at any point)

(B) (i) $a>0, v>0$
(iii) $\rightarrow q, r \quad\left(y=y_{o}+v t\right)$
(ii) $\mathrm{a}<0, \mathrm{v}>0$
(i) $\rightarrow s \quad\left(y=y_{o}+v t+\frac{1}{2} a t^{2}\right)$
(iii) $\mathrm{a}=0, \mathrm{v}>0$
(ii)

(C) $R \propto u^{2}$

(D) $T^{2} \propto L$

CHEMISTRY

PART III

Section - I

Straight Objective Type

This section contains 9 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D), out of which only one is correct.
45. Solubility product constants $\left(K_{s p}\right)$ of salts of types $M X, M X_{2}$ and $M_{3} X$ at temperature " T " are $4.0 \times 10^{-8}, 3.2 \times 10^{-14}$ and 2.7×10^{-15}, respectively. Solubilities ($\mathrm{mol} \mathrm{dm}{ }^{-3}$) of the salts at temperature " T " are in the order
(A) $M X>M X_{2}>M_{3} X$
(B) $M_{3} X>M X_{2}>M X$
(C) $M X_{2}>M_{3} X>M X$
(D) $\mathrm{MX}>\mathrm{M}_{3} \mathrm{X}>\mathrm{MX}_{2}$

Sol. (D)
Solubility of $\mathrm{MX}=0.0002$ moles $/ \mathrm{dm}^{3}$
Solubility of $\mathrm{MX}_{2}=0.00002$ moles $/ \mathrm{dm}^{3}$
Solubility of $\mathrm{M}_{3} \mathrm{X}=0.0001$
46. Electrolysis of dilute aqueous NaCl solution was carried out by passing 10 milli ampere current. The time required to liberate $0.01 \mathrm{~mol}^{2} \mathrm{H}_{2}$ gas at the cathode is (1 Faraday $=96,500 \mathrm{C} \mathrm{mol}^{-1}$)
(A) $9.6 \times 10^{4} \mathrm{sec}$
(B) $19.3 \times 10^{4} \mathrm{sec}$
(C) $28.95 \times 10^{4} \mathrm{sec}$
(D) $38.6 \times 10^{4} \mathrm{sec}$

Sol. (B)

$$
\begin{aligned}
& \mathrm{w}=\text { zlt or } \mathrm{n} \rightarrow \text { number of moles }=\frac{\text { it }}{96500 \mathrm{n} \rightarrow \mathrm{n}-\text { factor }} \\
& 0.01=\frac{10 \times 10^{-3} \times t}{96,500 \times 2} \\
& \mathrm{t}=19.3 \times 10^{4} \mathrm{sec} .
\end{aligned}
$$

47. Among the following, the surfactant that will form micelles in aqueous solution at the lowest molar concentration at ambient conditions is
(A) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{15} \mathrm{~N}^{+}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Br}^{-}$
(B) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{11} \mathrm{OSO}_{3}^{-} \mathrm{Na}^{+}$
(C) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{COO}^{-} \mathrm{Na}^{+}$
(D) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{11} \mathrm{Na}^{+}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Br}^{-}$

Sol. (B)
48. Both $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ are diamagnetic. The hybridisations of nickel in these complexes, respectively are
(A) $\mathrm{sp}^{3}, \mathrm{sp}^{3}$
(B) $s p^{3}, d s p^{2}$
(C) $d s p^{2}, s p^{3}$
(D) $\mathrm{dsp}^{2}, \mathrm{dsp}^{2}$

Sol. (B)
$\mathrm{Ni}(\mathrm{CO})_{4} \longrightarrow \mathrm{sp}^{3}$
$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2} \longrightarrow \mathrm{dsp}^{2}$
49. The IUPAC name of $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{NiCl}_{4}\right]$ is
(A) Tetrachloronickel (II) - tetraamminenickel (II)
(B) Tetraamminenickel (II) - tetrachloronickel (II)
(C) Tetraamminenickel (II) - tetrachloronickelate (II)
(D) Tetrachloronickel (II) - tetraamminenickelate (0)

Sol. (C)
Tetrammine nickel (II) - tetrachloro nickelate (II)
50. Among the following, the coloured compound is
(A) CuCl
(B) $\mathrm{K}_{3}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$
(C) CuF_{2}
(D) $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{BF}_{4}$

Sol. (C)
CuF_{2}
51. In the following reaction sequence, the correct structures of E, F and G are

(* implies ${ }^{13} \mathrm{C}$ labelled carbon)
(A) $\mathrm{E}=$

(B) $\mathrm{E}=$

 $\mathrm{G}=\mathrm{CHI}_{3}$
(C) $\mathrm{E}=$

 $\mathrm{G}=\stackrel{*}{\mathrm{C}} \mathrm{HI}_{3}$
(D) $\mathrm{E}=$

Sol. (C)

52. The correct stability order for the following species is

II

III

IV
(A) I $>$ IV $>$ I $>$ III
(B) I $>$ II $>$ III $>$ IV
(C) II $>$ I $>$ IV $>$ III
(D) I $>$ III $>$ II $>$ IV

Sol. (D)
I is tertiary and resonance stabilised.
III is secondary and resonance stabilised.
II is secondary only
IV is primary only.
53. Cellulose upon acetylation with excess acetic anhydride $/ \mathrm{H}_{2} \mathrm{SO}_{4}$ (catalytic) gives cellulose triacetate whose structure is

Sol. (A)
Cellulose is made up from β-D glucose.

Section II

This section contains 4 reasoning type questions. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.
54. STATEMENT-1: $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right] \mathrm{SO}_{4}$ is paramagnetic.
and
STATEMENT-2: The Fe in $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right] \mathrm{SO}_{4}$ has three unpaired electrons.
(A) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is a correct explanation for STATEMENT-1
(B) STATEMENT- 1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for STATEMENT-1
(C) STATEMENT-1 is True, STATEMENT-2 is False
(D) STATEMENT-1 is False, STATEMENT-2 is True.

Sol. (A)
Oxidation state of Fe is +1 , charges on NO is +1 and Fe^{+}has three unpaired electrons.
55. STATEMENT-1: The geometrical isomers of the complex $\left[\mathrm{M}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$ are optically inactive. and

STATEMENT-2: Both geometrical isomers of the complex $\left[\mathrm{M}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$ possess axis of symmetry.
(A) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is a correct explanation for STATEMENT-1
(B) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for STATEMENT-1
(C) STATEMENT-1 is True, STATEMENT-2 is False
(D) STATEMENT-1 is False, STATEMENT-2 is True.

Sol. (A)
56. STATEMENT-1: There is a natural asymmetry between converting work to heat and converting heat to work
and
STATEMENT-2: No process is possible in which the sole result is the absorption of heat from a reservoir and its complete conversion into work.
(A) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is a correct explanation for STATEMENT-1
(B) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for STATEMENT-1
(C) STATEMENT-1 is True, STATEMENT-2 is False
(D) STATEMENT-1 is False, STATEMENT-2 is True.

Sol. (A)
57. STATEMENT-1 : Aniline on reaction with $\mathrm{NaNO}_{2} / \mathrm{HCl}$ at $0^{\circ} \mathrm{C}$ followed by coupling with β-naphthol gives a dark blue coloured precipitate.
and
STATEMENT-2 : The colour of the compound formed in the reaction of aniline with $\mathrm{NaNO}_{2} / \mathrm{HCl}$ at $0^{\circ} \mathrm{C}$ followed by coupling with β-naphthol is due to the extended conjugation.
(A) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is a correct explanation for STATEMENT-1
(B) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for STATEMENT-1
(C) STATEMENT-1 is True, STATEMENT-2 is False
(D) STATEMENT-1 is False, STATEMENT-2 is True.

Sol. (D)

SECTION - III

Linked Comprehension Type

This section contains 2 paragraphs. Based upon each paragraph, 3 multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.

Paragraph for Question Nos. 58 to 60

In hexagonal systems of crystals, a frequently encountered arrangement of atoms is described as a hexagonal prism. Here, the top and bottom of the cell are regular hexagonas and three atoms are sandwiched in between them. A space-fillingt model of this structure, called hexagonal closepacked (HCP), is contituted of a sphere on a flat surface surrounded in the same plane by six identical spheres as closely as possible. Three spheres are then placed over the first layer so that they touch each other and represent the second layer. Each one of these three spheres touches three spheres of the bottom layer. Finally, the second layer is covered with a third layer that is identical to the bottom layer in relative position. Assume radius of every sphere to be ' r '.
58. The number of atoms in this HCP unit cell is
(A) 4
(B) 6
(C) 12
(D) 17

Sol. (B)
6
59. The volume of this CHP unit cell is
(A) $24 \sqrt{2 r^{3}}$
(B) $16 \sqrt{2} r^{3}$
(C) $12 \sqrt{2} r^{3}$
(D) $\frac{64}{3 \sqrt{3}} r^{3}$

Sol. (A)
$24 \sqrt{2} r^{3}$
60. The empty space in this HCP unit cells is
(A) 74%
(B) 47.6%
(C) 32%
(D) 26%

Sol. (D)
Packing fraction is HCP unit cell is $74 \% . \therefore$ the emptyspace is $100-74=26 \%$

Paragraph for Question Nos. 61 to 63

A t tertiary alcohol \mathbf{H} upon acid catalysed dehydration gives a product I. Ozonolysis of I leads to compounds \mathbf{J} and \mathbf{K}. Compound \mathbf{J} upon reaction with KOH gives benzyl alcohol and a compound \mathbf{L}, whereas \mathbf{K} on reaction with KOH gives only M .

61. Compound \mathbf{H} is formed by the reaction of
(A)

(B)

(C)

(D)

Sol. (B)
62. The structure of compound I is
(A)

(B)

(C)

(D)

Sol. (A)
63. The structures of compounds \mathbf{J}, \mathbf{K} and \mathbf{L}, respectively, are (A) $\mathrm{PhCOCH}_{3}, \mathrm{PhCH}_{2} \mathrm{COCH}_{3}$ and $\mathrm{PhCH}_{2} \mathrm{COO}^{-} \mathrm{K}^{+}$
(B) $\mathrm{PhCHO}, \mathrm{PhCH}_{2} \mathrm{CHO}$ and $\mathrm{PhCOO}^{-} \mathrm{k}^{+}$
(C) $\mathrm{PhCOCH}_{3}, \mathrm{PhCH}_{2} \mathrm{CHO}$ and $\mathrm{CH}_{3} \mathrm{COO}^{-} \mathrm{K}^{+}$
(D) $\mathrm{PhCHO}, \mathrm{PhCOCH}_{3}$ and $\mathrm{PhCOO}^{-} \mathrm{K}^{+}$

Sol. (D)

Explanation for questions 61 to 63

SECTION - IV

Maxtrix Match Type

This section contains 3 questions. Each question contains statements given in two columns, which have to be matched. Statements in Column I are labelled as A, B, C and D whereas statements in Column II are labelled as p, q, r and s. The answers to these questions have to be appropriately bubbled as illustrated in the following example.
If the correct matches are A-q, A-r, B-p, B-s, C-r, C-s and D-q, then the correctly bubbled matrix will look like the following.
64. Match the conversions in Column I with the type(s) of reaction(s) given in Column II. Indicate your answer by darkening the appropriate bubbles of the 4×4 matrix given in the ORS
Column I
(A) $\mathrm{PbS} \rightarrow \mathrm{PbO}$
(B) $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}$
(p) roasting
(C) $\mathrm{ZnS} \rightarrow \mathrm{Zn}$
(q) Calcination
(D) $\mathrm{Cu}_{2} \mathrm{~S} \rightarrow \mathrm{Cu}$
(r) carbon reduction
(s) self reduction

Column II

Sol.
A-p
B-q
C-p,r
D-p,s
65. Match the entries in Column I with the correctly related quantum number(s) in Column II. Indicate your answer by darkening the appropriate bubbles of the 4×4 matrix given in the ORS

Column I
(A) Orbital angular momentum of the electronin a hydrogen-like atomic orbitalb
(B) A hydrogen-like one-electron wave function obeying Pauli principle
(C) Shape, size and orientation of hydrogen -like atomic orbitals

Column II

(p) Principal quantum number
(q) Azimuthal quantum number
(r) Magnetic quantum number
(D) Probability density of electron at the nucleus in hydrogen-like atom
Sol.
A-q
B-s
C-p, q, r
D-p, q, r
66. Match the compounds in Column I with their characteristic test(s)/reactions(s) given in Column II. Indicate your answer by darkening the appropriate bubbles of the 4×4 matrix given in the ORS.

Column I

(A) $\mathrm{H}_{2} \mathrm{~N}-\stackrel{\oplus}{\mathrm{N}} \mathrm{H}_{3} \stackrel{\ominus}{\mathrm{C}}$
(B)

Column II
(p) sodium fusion extract of the compound give Prussian blue colour with FeSO_{4}
(q) gives positive FeCl_{3} test
(r) gives white precipitate with AgNO_{3}
(s) reacts with aldehydes to form the
corresponding hydrazone derivative

Sol.
$A-r, s$
$B-q, p$
$C-r, q, p$
$D-p, s$

