CHEMISTRY

This section contains 6 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.
36. At $80^{\circ} \mathrm{C}$, the vapur pressure of pure liquid ' A ' is 520 mm Hg and that of pure liquid ' B ' is 1000 mm Hg . If a mixture solution of ' A ' and ' B ' boils at $80^{\circ} \mathrm{C}$ and 1 atm pressure, the amount of ' A ' in the mixture is ($1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}$)
(1) 50 mol percent
(2) 52 mol percent
(3) 34 mol percent
(4) 48 mol percent

Sol. (1)
$\mathrm{P}^{0} \mathrm{~A}=520 \mathrm{~mm} \mathrm{Hg}$
$\mathrm{P}^{0} \mathrm{~B}=1000 \mathrm{~mm} \mathrm{Hg}$
$P_{T}=P_{A}^{0} X_{A}+P_{B}^{0} X_{B}$
$P_{T}=P_{A}^{0} X_{A}+P_{B}^{0}\left(1-X_{A}\right)$
$760=520 X_{A}+1000\left(1-X_{A}\right)$
$760=520 X_{A}+1000-1000 X_{A}$
$480 X_{A}=240$
$X_{A}=\frac{240}{480}=0.5=50 \mathrm{molpercent}$
37. For a reaction $\frac{1}{2} A \rightarrow 2 B$, rate of disapperance of ' A ' is related to the rate of appearance of ' B ' by the expression
(1) $-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=4 \frac{\mathrm{~d}[\mathrm{~B}]}{\mathrm{dt}}$
(2) $-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\frac{1}{2} \frac{\mathrm{~d}[\mathrm{~B}]}{\mathrm{dt}}$
(3) $-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\frac{1}{4} \frac{\mathrm{~d}[\mathrm{~B}]}{\mathrm{dt}}$
(4) $-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}$

Sol.(3)
$\frac{1}{2} A \rightarrow 2 B$
for any general reaction
na \rightarrow mB
$\frac{1}{\mathrm{n}} \frac{-\mathrm{dA}}{\mathrm{dt}}=\frac{1}{\mathrm{~m}} \frac{\mathrm{~dB}}{\mathrm{dt}}$

$$
\begin{aligned}
& \therefore \frac{1}{\frac{1}{2}} \frac{-\mathrm{dA}}{\mathrm{dt}}=\frac{1}{2} \frac{\mathrm{~dB}}{\mathrm{dt}} \\
& 2 \cdot \frac{-\mathrm{dA}}{\mathrm{dt}}=\frac{1}{2} \frac{\mathrm{~dB}}{\mathrm{dt}} \\
& \text { or } \frac{-\mathrm{dA}}{\mathrm{dt}}=\frac{1}{4} \frac{\mathrm{~dB}}{\mathrm{dt}}
\end{aligned}
$$

38. The equilibrium constants $K_{P_{1}}$ and $K_{P_{2}}$ for the reactions $X \leftrightharpoons 2 Y$ and $Z \leftrightharpoons P+Q$, respectively are in the ratio of $1: 9$. If the degree of dissociation of X and Z be equal then the ratio of total pressures at these equilibria is
(1) $1: 9$
(2) $1: 36$
(3) $1: 1$
(4) $1: 3$

Sol. (2)

$$
\begin{aligned}
& \mathrm{X} \rightleftharpoons 2 \mathrm{Y} \\
& 1-\alpha 2 \alpha \\
& \mathrm{~K}_{\mathrm{P}_{1}}=\frac{\left(\mathrm{mol} \text { fraction of } \mathrm{y} \cdot \mathrm{P}_{\mathrm{T}_{1}}\right)^{2}}{\mathrm{~mol} \text { fraction of } \mathrm{x} \cdot \mathrm{P}_{\mathrm{T}_{1}}} \\
& =\frac{\left(\frac{2 \alpha}{1+\alpha}\right)^{2} \cdot \frac{\mathrm{P}_{\mathrm{T}_{1}}^{2}}{\mathrm{P}_{\mathrm{T}_{1}}}}{\frac{1-\alpha}{1+\alpha}}=\frac{4 \alpha^{2}}{(1+\alpha)(1-\alpha)} \cdot \mathrm{P}_{\mathrm{T}_{1}} \\
& \mathrm{Z} \rightleftharpoons \mathrm{P}+\mathrm{Q} \\
& 1-\beta \\
& \beta \\
& \mathrm{K}_{\mathrm{P}_{2}}=\frac{\beta}{\frac{1-\beta}{1+\beta} \cdot \mathrm{P}_{\mathrm{T}_{2}}} \\
& =\frac{\beta}{(1-\beta)(1+\beta)} \cdot \mathrm{P}_{\mathrm{T}_{2}^{2}} \\
& \beta_{\mathrm{T}_{2}}^{2}
\end{aligned}
$$

$$
\text { given } \frac{\mathrm{K}_{\mathrm{P} 1}}{\mathrm{~K}_{\mathrm{P} 2}}=\frac{1}{9} \text { and } \alpha=\beta
$$

$\therefore \frac{1}{9}=\frac{4 \alpha^{2} \cdot \mathrm{P}_{\mathrm{T}_{1}}}{(1+\alpha)(1-\alpha)} \times \frac{(1+\alpha)(1-\alpha)}{\alpha^{2} \mathrm{P}_{\mathrm{T}_{2}}}$
$\frac{1}{36}=\frac{\mathrm{P}_{\mathrm{T}_{1}}}{\mathrm{P}_{\mathrm{T}_{2}}}$
39. Oxidising power of chlorine is aqueous solution can be determined by the parameters indicated below:

$$
\begin{array}{r}
\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \xrightarrow{\frac{1}{2} \Delta_{\mathrm{diss}} \mathrm{H}^{-}} \mathrm{Cl}(\mathrm{~g}) \xrightarrow{\Delta_{\mathrm{eg}^{-} \mathrm{H}^{-}}^{\longrightarrow}} \mathrm{Cl}^{-}(\mathrm{g}) \\
\xrightarrow[\mathrm{hyd}^{-} \mathrm{H}^{-}]{\longrightarrow} \mathrm{Cl}^{-}(\mathrm{aq})
\end{array}
$$

The energy involved in the conversion of
$\frac{1}{2} \mathrm{Cl}_{2}$ (g)to $\mathrm{Cl}^{-}(\mathrm{aq})$
using the data,
$\Delta_{\text {diss }} \mathrm{H}_{\mathrm{Cl}_{2}}^{-}=240 \mathrm{kJmol}^{-1}$,
$\Delta_{\mathrm{eg}} \mathrm{H}_{\mathrm{Cl}}^{-}=-349 \mathrm{kJmol}^{-1}$,
$\Delta_{\text {hyd }} \mathrm{H}_{\mathrm{Cl}}^{-}=-381 \mathrm{kJmol}^{-1}$) will be
(1) $+120 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(2) $+152 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(3) $-610 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(4) $-850 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Sol.(3) The energy involved in the reaction

$$
\begin{aligned}
& \frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{Cl}^{-}(\mathrm{g}) \\
& =\frac{1}{2} \times \Delta \mathrm{H}_{\mathrm{diss}} \mathrm{Cl}_{2}+\Delta \mathrm{H}_{\mathrm{eg}} \mathrm{Cl}+\Delta \mathrm{H}_{\mathrm{hyd}} \mathrm{Cl}^{-} \\
& =\frac{1}{2} \times 240+(-349)+(-381) \\
& =-610 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

40. α-D- (+)-glucose and $\beta-\mathrm{D}-(+)-$ glucose are
(1) enantiomers
(2) conformers
(3) epimers
(4) anomers

Sol. (4)
$\alpha-\mathrm{D}(+)$ glucose and $\beta-\mathrm{D}(+)$ glucose are anomers.
41. The absolute configuration of

is
(1) S, R
(2) S, S
(3) R, R
(4) R, S

Sol.(3)

$\therefore \mathrm{R}, \mathrm{R}$
42. Which of the following factors is of no significance for roasting sulphide orea to the oxides and not subjecting the sulphide ores to carbon reduction directly?
(1) CO_{2} is more volatile than CS_{2}
(2) Metal sulphides are thermodynamically more stable CS_{2}
(3) CO_{2} is thermodynamically more stable than CS_{2}
(4) Metal sulphides are less stable than the corresponding oxides

Sol. (3)
43. The electrophile, E^{\oplus} attacks the benzene ring to generate the intermediate σ-complex. Of the following, which σ-complex is of lowest energy?
(1)

(2)

(3)

(4)

Sol. (3)
 complex.
44. Bakelite is obtained from phenol by reaction with
(1) HCHO
(2) $\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}$
(3) $\mathrm{CH}_{3} \mathrm{CHO}$
(4) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$

Sol. (1)
Bakelite is obtained by condensation of phenol with formaldehyde HCHO .
45. The organic chloro compound, which show complete stereochemical inversion during a S_{N} reaction, is
(1) $\mathrm{CH}_{3} \mathrm{Cl}$
(2) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{CHCl}$
(3) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$
(4) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCl}$

Sol. (1)
Inversion is a characteristic property of $S_{N}{ }^{2}$ reaction and primary alkyl halides react via $S_{N}{ }^{2}$ $\therefore \mathrm{CH}_{3} \mathrm{Cl}$.
46. Toluene is nitrated and the resulting product reduced with Tin and hydrochloric acid. The product so obtained is diazotised and the heated with cuprous bromide. The reaction mixture so formed contains
(1) mixture of 0 - and m-bromotoluenes
(2) mixture of o - and p-bromotoluenes
(3) mixture of o - and p-dibromobenzenes
(4) mixture of 0 - and p-bromoanilines

Sol. (2)

47. In the following sequence of reactions, the alkene affords the compound ' B '

The compound B is
(1) $\mathrm{CH}_{3} \mathrm{CHO}$
(2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
(3) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
(4) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}$

Sol. (1)

48. For the following three reactions a, b and c, equilibrium constants are given:
a. $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{1}$
b. $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{2}$
c. $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{3}$
which of the following relations is correct?
(1) $K_{3} \cdot K_{2}^{3}=K_{1}^{2}$
(2) $K_{1} \sqrt{K_{2}}=K_{3}$
(3) $\mathrm{K}_{2} \mathrm{~K}_{3}=\mathrm{K}_{1}$
(4) $\mathrm{K}_{3}=\mathrm{K}_{1} \mathrm{~K}_{2}$

Sol. (4)
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}), \mathrm{K}_{1}=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}), \mathrm{K}_{2}=\frac{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{3}}{\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}), \mathrm{K}_{3}=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]^{4}}{\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}$
So, $\mathrm{K}_{1}=\frac{\mathrm{K}_{3}}{\mathrm{~K}_{2}}$
$\therefore \mathrm{K}_{3}=\mathrm{K}_{1} \mathrm{~K}_{2}$
49. Standard entropy of X_{2}, Y_{2} and $X Y_{3}$ are 60,40 and $50 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$, respectively. For the reaction, $\frac{1}{2} X_{2}+\frac{3}{2} Y_{2} \rightarrow X Y_{3}, \Delta H=-30 \mathrm{~kJ}$, to be at equlibrium, the temperature will be
(1) 1000 K
(2) 1250 K
(3) 500 K
(4) 750 K

Sol. (4)

$$
\begin{aligned}
& \frac{1}{2} \mathrm{X}_{2}+\frac{3}{2} \mathrm{Y}_{2} \rightarrow \mathrm{XY}_{3}, \quad \Delta \mathrm{H}=-30 \mathrm{~kJ} \\
& \Delta \mathrm{~S}=50-\frac{1}{2} \times 60-\frac{3}{2} \times 40 \\
& \Delta \mathrm{~S}=40 \mathrm{~J} / \mathrm{K}=-0.04 \mathrm{~kJ} / \mathrm{K} \\
& \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} . \Delta \mathrm{S} \\
& \text { at equlibrium } \Delta \mathrm{G}=0 \\
& \mathrm{~T}=\frac{\Delta \mathrm{H}}{\Delta \mathrm{~S}}=\frac{-30}{-0.04} \\
& \mathrm{~T}=750 \mathrm{~K}
\end{aligned}
$$

50. Phenol, when it first reacts with concentrated sulphuric acid and then with concentrated nitiric acid, gives
(1) nitrobenzene
(2) 2,4,6-trinitrobenzene
(3) o-nitriphenol
(4) p-nitrophenol

Sol. (2)

2,4,6-trinitrophenol
51. The hydrocarbon which can react with sodium in liquid ammonia is
(1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{3}$
(2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(3) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$
(4) $\mathrm{CH}_{3} \mathrm{CH} \equiv \mathrm{CHCH}_{3}$

Sol. (3)
Only terminal alkaline react with NaNH_{2}.
52. The treatment of $\mathrm{CH}_{3} \mathrm{MgX}$ with $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CH}-\mathrm{H}$ produces
(1) CH_{4}
(2) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$
(3) $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$
H H

(4) $\mathrm{CH}_{3}-\mathrm{C}=\mathrm{C}-\mathrm{CH}_{3}$

Sol. (1)

$$
\mathrm{CH}_{3} \mathrm{MgX}+\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}-\mathrm{H} \longrightarrow \mathrm{CH}_{4}+\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}-\mathrm{MgX}
$$

53. The correct decreasing order of priority for the functional groups of organic compounds in the IUPAC system of nomenclature is
(1) $-\mathrm{CONH}_{2},-\mathrm{CHO},-\mathrm{SO}_{3} \mathrm{H},-\mathrm{COOH}$
(2) $-\mathrm{COOH},-\mathrm{SO}_{3} \mathrm{H},-\mathrm{CONH}_{2},-\mathrm{CHO}$
(3) $-\mathrm{SO}_{3} \mathrm{H},-\mathrm{COOH},-\mathrm{CONH}_{2},-\mathrm{CHO}$
(4) $-\mathrm{CHO},-\mathrm{COOH},-\mathrm{SO}_{3} \mathrm{H},-\mathrm{CONH}_{2}$

Sol. (2)
54. The pK_{a} of a weak acid, HA , is 4.80 . The pK_{b} of a weak base, BOH , is 4.78 . The pH of an aqueous solution of the corresponding salt, BA, will be
(1) 9.22
(2) 9.58
(3) 4.79
(4) 7.01

Sol. (4)

$$
\begin{aligned}
& \mathrm{pH}=7-\frac{1}{2} \log \frac{\mathrm{k}_{\mathrm{a}}}{\mathrm{k}_{\mathrm{b}}}=7+\frac{1}{2}\left(-\log \mathrm{k}_{\mathrm{a}}+\log \mathrm{k}_{\mathrm{b}}\right) \\
& =7+\frac{1}{2}(4.8-4.78)=7.01
\end{aligned}
$$

55. In context with the industrial preparation of hydrogen from water gas $\left(\mathrm{CO}+\mathrm{H}_{2}\right)$, which of the following is the correct statement?
(1) CO is oxidised to CO_{2} with steam in the presence of a catalyst followed by absorption of CO_{2} in alkali
(2) CO and H_{2} are fractionally separated using differences in their densities
(3) CO is removed by absorption in aqueous $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$ solution
(4) H_{2} is removed through occlusion with Pd

Sol. (1)
56. In a compound, atoms of element Y form ccp lattice and those of element X occupy $\left(\frac{2}{3}\right)^{\text {rd }}$ of tetrahedral voids. The formula of the compound will be
(1) $X_{3} Y_{4}$
(2) $X_{4} Y_{3}$
(3) $X_{2} Y_{3}$
(4) $X_{2} Y$

Sol. (2)
Effective number of atoms of $Y=4=12$
Effective number of atoms of $X=8 \times \frac{2}{3}=\frac{16}{3}=16$
$X_{16} Y_{12}=X_{4} Y_{3}$
57. Which one of the following pairs of species have the same bond order?
(1) NO^{+}and CN^{+}
(2) CN^{-}and NO^{+}
(3) CN^{-}and CN^{+}
(4) O_{2}^{-}and CN^{-}

Sol. (2)
Total number of electrons in CN^{-}and NO^{+}are 14
$\sigma 1 s^{2}<\sigma 1^{*} s^{2}<\sigma 2 s^{2}<\sigma 2^{*} s^{2}<\pi 2 P_{y}^{2}=\pi 2 p_{z}^{2}<\sigma 2 P_{x}^{2}$
B.O. $=\frac{1}{2}(10-4)=3$
58. The vapour pressure of water at $20^{\circ} \mathrm{C}$ is 17.5 mm Hg . If 18 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is added to 178.2 g of water at $20^{\circ} \mathrm{C}$, the vapour pressure of the resulting solution will be
(1) 17.325 mm Hg
(2) 17.675 Hg
(3) 15.750 mm Hg
(4) 16.500 mm Hg

Sol. (1)

$$
\begin{aligned}
& P_{s}=P_{o} \frac{N}{n+N} \\
& =17.5 \times \frac{\frac{178.2}{18}}{\frac{178.2}{18}+\frac{18}{180}}=17.5 \times \frac{9.9}{9.9+0.1} \\
& =17.5 \times \frac{9.9}{10}=17.325 \mathrm{~mm} \mathrm{Hg}
\end{aligned}
$$

59. Four species are listed below
i. HCO_{3}^{-}
ii. $\mathrm{H}_{3} \mathrm{O}^{+}$
iii. HSO_{4}^{-}
iv. $\mathrm{HSO}_{3} \mathrm{~F}$

Which one of the following is the correct sequence of their acid strength?
(1) iii < i < iv < ii
(2) iv < ii < iii < i
(3) ii < iii < i < iv
(4) i < iii < ii < iv

Sol. (4)
60. The ionisation enthalpy of hydrogen atom is $1.312 \times 10^{6} \mathrm{~J} \mathrm{~mol}^{-1}$. The energy required to excite the electron in the atom from $n=1$ to $n=2$ is
(1) $9.84 \times 10^{5} \mathrm{~J} \mathrm{~mol}^{-1}$
(2) $8.51 \times 10^{5} \mathrm{~J} \mathrm{~mol}^{-1}$
(3) $6.56 \times 10^{5} \mathrm{~J} \mathrm{~mol}^{-1}$
(4) $7.56 \times 10^{5} \mathrm{~J} \mathrm{~mol}^{-1}$

Sol. (1)

$$
\begin{aligned}
& E_{n}=-1.312 \times 10^{6}\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}\right] \mathrm{J} / \mathrm{mol} \\
& =-1.312 \times 10^{6}\left[1-\frac{1}{4}\right] \mathrm{J} / \mathrm{mol} \\
& =-\frac{3}{4} \times 1.312 \times 10^{6} \mathrm{~J} / \mathrm{mol} \\
& =9.84 \times 10^{5} \mathrm{~J} / \mathrm{mol}
\end{aligned}
$$

61. Which one of the following constitutes a group of the isoelectronic species?
(1) $\mathrm{N}_{2}, \mathrm{O}_{2}^{-}, \mathrm{NO}^{+}, \mathrm{CO}$
(2) $\mathrm{C}_{2}^{2-}, \mathrm{O}_{2}^{-}, \mathrm{CO}, \mathrm{NO}$
(3) $\mathrm{NO}^{+}, \mathrm{C}_{2}^{2-}, \mathrm{CN}^{-}, \mathrm{N}_{2}$
(4) $\mathrm{CN}^{-}, \mathrm{N}_{2}, \mathrm{O}_{2}^{2-}, \mathrm{C}_{2}^{2-}$

Sol. (3)
Number of electrons
$\mathrm{NO}^{+}=7+8-1=14$
$\mathrm{C}_{2}^{2-}=6 \times 2+2=14$
$\mathrm{CN}^{-}=6+7+1=14$
$N_{2}=2 \times 7=14$
62. Gold numbers of protective colloids A, B, C and D are $0.50,0.01,0.10$ and 0.005 , respectively. The correct order of their protective powers is
(1) B $<$ D $<$ A $<$ C
(2) D $<$ A $<$ C $<$ B
(3) C $<$ B $<$ D $<$ A
(4) A $<$ C $<$ B $<$ D

Sol. (4)
Gold number $\propto \frac{1}{\text { Protective power }}$
So, $\mathrm{A}<\mathrm{C}<\mathrm{B}<\mathrm{D}$
63. Larger number of oxidation states are exhibited by the actinoids than those by the lanthanoids, the main reason being
(1) more reactive nature of the actinoids than the lanthanoids
(2) $4 f$ orbitals more diffused than the 5 orbitals
(3) lesser energy difference between $5 f$ and $6 d$ than between $4 f$ and 5d orbitals
(4) more energy differences between $5 f$ and $6 d$ than between $4 f$ and 5d orbitals

Sol. (3)
$5 f$ and 6d has less energy difference while $4 f$ and 5d orbitals have large.
64. Given $\mathrm{E}_{\mathrm{Cr}^{3+} / \mathrm{Cr}}^{\mathrm{O}}=-0.72 \mathrm{~V}, \mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{\mathrm{o}}=-0.42 \mathrm{~V}$.

The potential for the cell $\mathrm{Cr}\left|\mathrm{Cr}^{3+}(0.1 \mathrm{M})\right|\left|\mathrm{Fe}^{2+}(0.01 \mathrm{M})\right| \mathrm{Fe}$ is
(1) -0.26 V
(2) 0.26 V
(3) 0.339 V
(4) -0.339 V

Sol. (2)

$$
\begin{aligned}
& \mathrm{E}_{\text {cell }}=\mathrm{E}_{\mathrm{cell}}^{0}-\frac{.0591}{\mathrm{n}} \log _{\mathrm{C}} \\
& =.30-\frac{.0591}{6} \log \frac{\left[\mathrm{Cr}^{3+}\right]^{2}}{\left[\mathrm{Fe}^{2+}\right]^{3}} \\
& =.30-\frac{.0591}{6} \log \frac{(.1)^{2}}{(.01)^{3}} \\
& =.30-\frac{.0591}{6} \times 4 \\
& =.30-.0394=.2606
\end{aligned}
$$

65. Amount of oxalic acid present in a solution can be determined b its titration with KMnO_{4} solution in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$. The titration gives unsatisfactory result when carried out in the presence of HCl , because HCl
(1) oxidises oxalic acid to carbon dioxide and water
(2) gets oxidised by oxalic acid to chlorine
(3) furnishes H^{+}ions in addition to those from oxalic acid
(4) reduces permanganate to Mn^{2+}

Sol. (4)
66. Among the following substituted silanes the one which will give rise to cross linked silicone polymer on hydrolysis is
(1) $\mathrm{R}_{3} \mathrm{SiCl}$
(2) $\mathrm{R}_{4} \mathrm{Si}$
(3) RSiCl_{3}
(4) $\mathrm{R}_{2} \mathrm{SiCl}_{2}$

Sol. (3)

\downarrow

67. In which of the following octahedral complexes of Co (at. no. 27), will the magnitude of Δ_{o} be the highest?
(1) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(2) $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
(3) $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
(4) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Sol. (2)
The strong ligand will produce large Δ_{o}.
As pairing tendency of CN^{-}is larger than $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
So, $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ will have highest Δ_{o}.
68. The coordination number and the oxidation state of the element ' E ' in the complex $\left[\mathrm{E}(\mathrm{en})_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right] \mathrm{NO}_{2}$ (where (en) is ethylene diamine) are, respectively
(1) 6 and 3
(2) 6 and 2
(3) 4 and 2
(4) 4 and 3

Sol. (1)

Oxidation number of $\mathrm{E}=\mathrm{a}-2-1=0 \therefore \mathrm{a}=+3$
Coordination number $=2 \times 2+2=6$ (as en and $\mathrm{C}_{2} \mathrm{O}_{4}$ both are bidentate)
69. Identify the wrong statement in the following.
(1) Acid rain is mostly because of the oxides of nitrogen and sulphur
(2) Chlorofluorocarbons are responsible for ozone layer depletion
(3) Greenhouse effect is responsible for global warming
(4) Ozone layer does not permit infrared radiation from the sun to reach the earth

Sol. (4)
70. Which one of the following is the correct statement?
(1) $\mathrm{B}_{2} \mathrm{H}_{6} .2 \mathrm{NH}_{3}$ is known as 'inorganic benzene'
(2) Boric acid is a protonic acid
(3) Beryllium exhibits coordination number of six
(4) Chlorides of both beryllium and aluminium have bridged chloride structures in solid phase

Sol. (4)

