Directions : Questions number 1 to 5 are Assertion-Reason type questions. Each of these questions contains two statements : Statement-1 (Assertion) and Statement-2 (Reason). Each of these questions also has four alternative choices, only one of which is the correct answer. You have to select the correct choice.

1. Let p be the statement " x is an irrational number", q be the statement " y is a transcendental number", and r be the statement " x is a rational number iff y is a transcendental number".
Statement-1:
r is equivalent to either q or p.

Statement-2 :

r is equivalent to $\sim(p \leftrightarrow \sim q)$.
(1) Statement- 1 is true, Statement- 2 is false
(2) Statement-1 is false, Statement-2 is true
(3) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1
(4) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1

Sol. (..)

			r	Statement-I	Statement -II	
p	q	$\sim \mathrm{p}$	$\sim \mathrm{q}$	$\sim \mathrm{p} \leftrightarrow \mathrm{q}$	$\mathrm{q} \vee \mathrm{p}$	$\sim(\mathrm{p} \leftrightarrow \sim \mathrm{q})$
F	F	T	T	F	F	T
F	T	T	F	T	T	F
T	F	F	T	T	T	F
T	T	F	F	F	T	T

r is not equivalent to either of the statements
2. In a shop there are five types of ice-creams available. A child buys six ice-creams available. A child buys six ice-creams
Statement-1:
The number of different ways the child can buy the six ice-creams is ${ }^{10} \mathrm{C}_{5}$.
Statement-2:
The number of different ways the child can buy the six ice-creams is equal to the number of different ways of arranging 6 A's and 4 B's in a row.
(1) Statement-1 is true, Statement-2 is false
(2) Statement-1 is false, Statement-2 is true
(3) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1
(4) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1

Sol. (2)

$$
\begin{aligned}
& a+b+c+d+e=6 \\
& a \text { ice creams of type } I, b \text { off type II, } . .
\end{aligned}
$$

\therefore total ways $={ }^{10} \mathrm{C}_{4}$
$6 A^{\prime} S$ and $4 B^{\prime} S$ can be arranged in a row in $\frac{10!}{6!4!}={ }^{10} \mathrm{C}_{4}$ ways
3. Statement-1:
$\sum_{r=0}^{n}(r+1){ }^{n} C_{r}=(n+2) 2^{n-1}$.

Statement-2 :
$\sum_{r=0}^{n}(r+1)^{n} C_{r} x^{r}=(1+x)^{n}+n x(1+x)^{n-1}$.
(1) Statement- 1 is true, Statement-2 is false
(2) Statement-1 is false, Statement-2 is true
(3) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1
(4) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1

Sol. (3)

$$
\begin{aligned}
\sum_{r=0}^{n}(r+1)^{n} C_{r} & =\sum_{r=0}^{n} r{ }^{n} C_{r}+\sum_{r=0}^{n}{ }^{n} C_{r} \\
& =n \times 2^{n-1}+2^{n} \\
& =2^{n-1}(n+2)
\end{aligned}
$$

Statement-1 is true

$$
\begin{aligned}
\sum_{r=0}^{n}(r+1){ }^{n} C_{r} x^{r} & =\sum_{r=0}^{n} r{ }^{n} C_{r} x^{r}+\sum_{r=0}^{n}{ }^{n} C_{r} x^{r} \\
& =n x(1+x)^{n-1}+(1+x)^{n}
\end{aligned}
$$

Statement-2 is true \& Statement-2 explains Statement-1
4. Statement-1:

For every natural number $n \geq 2$,
$\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}>\sqrt{n}$.

Statement-2 :
$\sqrt{\mathrm{n}(\mathrm{n}+1)}<\mathrm{n}+1$.
(1) Statement- 1 is true, Statement- 2 is false
(2) Statement-1 is false, Statement-2 is true
(3) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1
(4) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1

Sol. (3) $n>2$

$$
\begin{aligned}
& 1>\frac{1}{\sqrt{n}} \\
& \frac{1}{\sqrt{2}}>\frac{1}{\sqrt{n}}
\end{aligned}
$$

$$
\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{n}}
$$

$$
\frac{1}{\sqrt{4}}>\frac{1}{\sqrt{n}}
$$

$$
\frac{1}{\sqrt{n}}=\frac{1}{\sqrt{n}}
$$

Adding them

$$
1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{n}}>\sqrt{n}
$$

Statement- 1 is True
$\sqrt{n(n+1)}<n+1$
$\Rightarrow \sqrt{\mathrm{n}}<\sqrt{\mathrm{n}+1}$

$$
\begin{equation*}
\frac{1}{\sqrt{n}}>\frac{1}{\sqrt{n+1}} \tag{True}
\end{equation*}
$$

5. Let A be a 2×2 matrix with real entries. Let I be the 2×2 identity matrix. Denote by $\operatorname{tr}(\mathrm{A})$, the sum of diagonal entries of A . Assume that $\mathrm{A}=\mathrm{I}$.

Statement-1:

If $A \neq l$ and $A \neq-l$, then $\operatorname{det} A=-1$.

Statement-2 :

If $A \neq I$ and $A \neq-l$, then $\operatorname{tr}(A) \neq 0$.
(1) Statement- 1 is true, Statement- 2 is false
(2) Statement-1 is false, Statement-2 is true
(3) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1
(4) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1

Sol. (1)

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{ll}
a^{2}+b c & b(a+d) \\
(a+d) c & b c+d^{2}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& a^{2}+b c=1, \quad b(a+d)=0 \\
& (a+d) c=0, \quad b c+d^{2}=1 \\
& \text { if } b=0 \quad \Rightarrow a^{2}=d^{2}=1 \\
& n o w \text { if } a+d=0 \\
& a=1, d=-1 \text { or } a=-1, d=1 \\
& \left(\begin{array}{cc}
1 & 0 \\
c & -1
\end{array}\right) \text { or }\left(\begin{array}{cc}
-1 & 0 \\
c & 1
\end{array}\right)
\end{aligned}
$$

Then $A \neq 1$ or - 1
Then $\operatorname{tr}(A)=0,|A|=-1$, if $a+d \neq 0, c=0$

$$
\text { then } A=1 \text { or }-I
$$

6. The statement $p \rightarrow(q \rightarrow p)$ is equivalent to
(1) $p \rightarrow(q \leftrightarrow p)$
(2) $p \rightarrow(p \rightarrow q)$
(3) $p \rightarrow(p \vee q)$
(4) $p \rightarrow(p \wedge q)$

Sol (3) $\quad p \quad q \quad p \vee q \quad q \rightarrow q \quad p \rightarrow(q \rightarrow q) \quad p \rightarrow(p \vee q)$

F	F	F	T	T	T
F	T	T	F	T	T
T	F	T	T	T	T
T	T	T	T	T	T

7. The value of $\cot \left(\operatorname{cosec}^{-1} \frac{5}{3}+\tan ^{-1} \frac{2}{3}\right)$ is
(1) $\frac{5}{17}$
(2) $\frac{6}{17}$
(3) $\frac{3}{17}$
(4) $\frac{4}{17}$

Sol (2) $\quad \cot \left(\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{2}{3}\right)$

$$
\cot \left(\tan ^{-1} \frac{\frac{3}{4}+\frac{2}{3}}{1-\frac{3}{4} \times \frac{2}{3}}\right)
$$

$$
\cot \left(\tan ^{-1} \frac{17}{6}\right)
$$

$$
=\frac{6}{17}
$$

8. The differential equation of the family of circles with fixed radius 5 units and centre on the line $y=2$ is
(1) $(x-2)^{2} y^{\prime 2}=25-(y-2)^{2}$
(2) $(x-2) y^{2}=25-(y-2)^{2}$
(3) $(y-2) y^{\prime 2}=25-(y-2)^{2}$
(4) $(y-2)^{2} y^{\prime 2}=25-(y-2)^{2}$

Sol (4) Let centre be (h, 2) equation of circle becomes

$$
\begin{aligned}
& (x-h)^{2}+(y-2)^{2}=25 \\
& 2(x-h)+2(y-2) y^{\prime}=0 \\
& x-h=(2-y) y^{\prime} \\
& (y-2)^{2}\left(y^{\prime}\right)^{2}+(y-2)^{2}=25
\end{aligned}
$$

9. Let $I=\int_{0}^{1} \frac{\sin x}{\sqrt{x}} d x$ and $J=\int_{0}^{1} \frac{\cos }{\sqrt{x}} d x$. Then which one of the following is true ?
(1) I $>\frac{2}{3}$ and J <2
(2) I $>\frac{2}{3}$ and J >2
(3) l $<\frac{2}{3}$ and J <2
(4) I $<\frac{2}{3}$ and J >2

Sol (3) $\quad I=\int_{0}^{1} \frac{\sin x}{\sqrt{x}} d x, J=\int_{0}^{1} \frac{\cos x}{\sqrt{x}} d x$
for $0<x<1 \quad \sin x<x$
$\Rightarrow \frac{\sin x}{\sqrt{x}}<\sqrt{x}$
$\Rightarrow \int_{0}^{1} \frac{\sin x}{\sqrt{x}} d x<\int_{0}^{1} \sqrt{x} d x$
$\Rightarrow l<\frac{2}{3}$
$\int_{0}^{1} \frac{\cos x}{\sqrt{x}} d x<\int_{0}^{1} \frac{1}{\sqrt{x}} d x$
$\mathrm{J}<2$
10. The area of the plane region bounded by the curves $x+2 y^{2}=0$ and $x+3 y^{2}=1$ is equal to
(1) $\frac{4}{3}$
(2) $\frac{5}{3}$
(3) $\frac{1}{3}$
(4) $\frac{2}{3}$

Sol (1) $\quad y^{2}=-\frac{1}{2} x$

$$
y^{2}=\frac{1}{3}(1-x)
$$

On solving
$-\frac{1}{2} x=\frac{1}{3}(1-x)$
$-\frac{1}{2} x=\frac{1}{3}(1-x)$
$\Rightarrow \quad \frac{1}{3} x-\frac{1}{2} x=\frac{1}{3}$
$x=\frac{-1}{3} \times 6$
$=-2$
$\therefore \quad \mathrm{y}^{2}=-\frac{1}{2} \mathrm{x}(-2)$
$y^{2}=1$
$y= \pm 1$
Required Area

$$
\begin{aligned}
& =\int_{0}^{1}\left(x_{1}-x_{2}\right) d y \\
& =2 \int_{0}^{1}\left[\left(1-3 y^{2}\right)-\left(-2 y^{2}\right)\right] d y \\
& =2 \int_{0}^{1}\left(1-y^{2}\right) d y \\
& =2\left[y-\frac{y^{3}}{3}\right]_{0}^{1}
\end{aligned}
$$

11. The value of $\sqrt{2} \int \frac{\sin x d x}{\sin \left(x-\frac{\pi}{4}\right)}$ is
(1) $x-\log \left|\cos \left(x-\frac{\pi}{4}\right)\right|+c$
(2) $x+\log \left|\cos \left(x-\frac{\pi}{4}\right)\right|+c$
(3) $x-\log \left|\sin \left(x-\frac{\pi}{4}\right)\right|+c$
(4) $x+\log \left|\sin \left(x-\frac{\pi}{4}\right)\right|+c$

Sol (4) $\quad \sqrt{2} \int \frac{\sin x}{\sin \left(x-\frac{\pi}{4}\right)} d x$

$$
=\sqrt{2} \int \frac{\sin \left(\left(x-\frac{\pi}{4}\right)+\frac{\pi}{4}\right)}{\sin \left(x-\frac{\pi}{4}\right)} d x
$$

$$
=\sqrt{2} \int \frac{\sin \left(x-\frac{\pi}{4}\right) \cos \frac{\pi}{4}+\sin \frac{\pi}{4} \cos \left(x-\frac{\pi}{4}\right)}{\sin \left(x-\frac{\pi}{4}\right)} d x
$$

$$
=\sqrt{2} \cos \frac{\pi}{4} \int \mathrm{dx}+\sqrt{2} \sin \frac{\pi}{4} \int \cot \left(x-\frac{\pi}{4}\right) \mathrm{dx}
$$

$$
=x+\log \left|\sin \left(x-\frac{\pi}{4}\right)\right|+c
$$

12. $A B$ is a vertical pole with B at the ground level and A at the top. A man finds that the angle of elevation of the point A from a certain point C on the ground is 60°. He moves away from the pole along the line $B C$ to a point D such that $C D=7 \mathrm{~m}$. From D the angle of elevation of the point A is 45°. Then the height of the pole is
(1) $\frac{7 \sqrt{3}}{2} \frac{1}{\sqrt{3}+1} \mathrm{~m}$
(2) $\frac{7 \sqrt{3}}{2} \frac{1}{\sqrt{3}-1} \mathrm{~m}$
(3) $\frac{7 \sqrt{3}}{2}(\sqrt{3}+1) \mathrm{m}$
(4) $\frac{7 \sqrt{3}}{2}(\sqrt{3}-1) \mathrm{m}$

Sol (3) Let height of pole is y m

$\therefore \quad \tan 60^{\circ}=\frac{\mathrm{y}}{\mathrm{x}}$
$\Rightarrow \quad \mathrm{x}=\frac{\mathrm{y}}{\sqrt{3}}$
$\& \tan 45^{\circ}=\frac{y}{x+7}$
$\Rightarrow \quad x+7=y$
$\Rightarrow \quad \frac{y}{\sqrt{3}}+7=y$
$\Rightarrow \quad y\left(1-\frac{1}{\sqrt{3}}\right)=7$
$\Rightarrow \quad y=\frac{7 \sqrt{3}}{\sqrt{3}-1}$
$y=\frac{7 \sqrt{3}}{2}(\sqrt{3}+1) m$
13. How many real solutions does the equation $x^{7}+15 x^{5}+16 x^{3}+30 x-560=0$ have ?
(1) 5
(2) 7
(3) 1
(4) 3

Sol (3) $\quad f(x)=x^{7}+14 x^{5}+16 x^{3}+30 x-560$
$\therefore \quad f^{\prime}(x)>0$
$\Rightarrow f(x)$ is increasing
$\Rightarrow \quad f(x)=0$ has only one solution
14. Let $f(x)=\left\{\begin{array}{cc}(x-1) \sin \frac{1}{x-1} & \text { if } \neq 1 \\ 0 & \text { if } x=1\end{array}\right.$ Then which one of the following is true ?
(1) f is differentiable at $x=1$ but not at $x=0$
(2) f is neither differentiable at $x=$ nor at $x=1$
(3) f is differentiable at $x=0$ and at $x=1$
(4) f is differentiable at $x=0$ but not at $x=1$

Sol (4)

$$
f^{\prime}(x)=\sin \frac{1}{x-1}-\frac{1}{x-1} \cos \frac{1}{x-1}
$$

$f(x)$ is differentiable at $x=0$
but not differentiable at $x=1$
15. The first two terms of a geometric progression add up to 12 . The sum of the third and the fourth terms is 48 . If the terms of the geometric progression are alternately positive and negative, then the first term is
(1) 4
(2) -4
(3) -12
(4) 12

Sol (4) $a+a r=12$

$$
\begin{array}{ll}
& a(1+r)=12 \\
& a r^{2}+a r^{3}=48 \\
& a r^{2}(1+r)=48 \\
& r^{2}=4 \\
& r= \pm 2 \\
\Rightarrow \quad & r=-2 \\
\therefore \quad & a(1-2)=12 \\
& a=-12
\end{array}
$$

16. It is given that the events A and B are such that $P(A)=\frac{1}{4}, P(A \mid B)=\frac{1}{2}$ and $P(B \mid A)=\frac{2}{3}$. Then $P(B)$ is
(1) $\frac{1}{2}$
(2) $\frac{1}{6}$
(3) $\frac{1}{3}$
(4) $\frac{2}{3}$

Sol. (3)
$P(A \cap B)=P(A) P(B \mid A)=P(B) \cdot P(A \mid B)$
$\Rightarrow \frac{1}{4} \times \frac{2}{3}=P(B) \times \frac{1}{2}$
$\Rightarrow P(B)=\frac{1}{3}$
17. A Die is thrown. Let A be the event that the number obtained is greater than 3 . Let B be the event that the number obtained is less than 5. Then $P(A \cup B)$ is
(1) $\frac{2}{5}$
(2) $\frac{3}{5}$
(3) 0
(4) 1 s

Sol. (4)
$A=\{4,5,6\}, B=\{1,2,3,4\}$
$A \cup B=\{1,2,3,4,5,6\}$
$P(A \cup B)=1$
18. Suppose the cubic $x^{3}-p x+q$ has three distinct real roots where $p>0$ and $q>0$. Then which one of the following holds ?
(1) The cubic has maxima at both $\sqrt{\frac{p}{3}}$ and $-\sqrt{\frac{p}{3}}$
(2) The cubic has minima at $\sqrt{\frac{p}{3}}$ and maxima at $-\sqrt{\frac{p}{3}}$
(3) The cubic has minima at $-\sqrt{\frac{p}{3}}$ and maxima $\sqrt{\frac{p}{3}}$
(4) The cubic has minima at both $\sqrt{\frac{p}{3}}$ and $-\sqrt{\frac{p}{3}}$

Sol. (2)
Let $f(x)=x^{3}-p x+q$
$f^{\prime}(x)=3 x^{2}-p=0$
$\Rightarrow x= \pm \sqrt{\frac{p}{3}}$
$f^{\prime \prime}(x)=6 x$
$f^{\prime \prime}(x)$ at $x=\sqrt{\frac{p}{3}}$ is positive
\therefore Minima at $\mathrm{x}=\sqrt{\frac{\mathrm{p}}{3}}$
and $f "(x)$ at $x=-\sqrt{\frac{p}{3}}$ is negative
So, maxima at $x=-\sqrt{\frac{p}{3}}$
19. How many different words can be formed by jumbling the letters in the word MISSISSIPPI in which no two S are adjacent?
(1) $7 .{ }^{6} \mathrm{C}_{4} \cdot{ }^{8} \mathrm{C}_{4}$
(2) $8 \cdot{ }^{6} \mathrm{C}_{4} \cdot{ }^{7} \mathrm{C}_{4}$
(3) 6.7. ${ }^{8} \mathrm{C}_{4}$
(4) $6.8 .{ }^{7} \mathrm{C}_{4}$

Sol. (1)
Total words which have no two s are adjacent
$={ }^{8} \mathrm{C}_{4} \times \frac{7!}{4!\times 2!}={ }^{8} \mathrm{C}_{4} \times 7 \times \frac{6!}{4!\times 2!}$
$=7 \times{ }^{6} \mathrm{C}_{4} \times{ }^{8} \mathrm{C}_{4}$
20. The perpendicular bisector of the line segment joining $P(1,4)$ and $Q(k, 3)$ has y-intercept -4 . Then a possible value of k is
(1) -4
(2) 1
(3) 2
(4) -2

Sol. (1)

Let the equation of perpendicular bisector is $y=m x-4$
Now, this line is passing through $R\left(\frac{k+1}{2}, \frac{7}{2}\right)$
So, $\frac{7}{2}=m\left(\frac{k+1}{2}\right)-4$
$\Rightarrow 7=\mathrm{mk}+\mathrm{m}-8$
Now, $m=-\left(\frac{1}{\text { slope of } P Q}\right)$
$\Rightarrow \mathrm{m}=-\frac{(1-\mathrm{k})}{1}=(\mathrm{k}-1)$
Putting value of m in equation (i)
$(k-1) k+(k-1)-8=7$
$\Rightarrow \mathrm{k}^{2}-1=15$
$\Rightarrow \mathrm{k}^{2}=16$
$\Rightarrow \mathrm{k}= \pm 4$
21. A parabola has the origin as its focus and the line $x=2$ as the directrix. Then the vertex of the parabola is at
(1) $(2,0)$
(2) $(0,2)$
(3) $(1,0)$
(4) $(0,1)$

Sol. (3)

22. The point diametrically opposite to the point $P(1,0)$ on the circle $x^{2}+y^{2}+2 x+4 y-3=0$ is
(1) $(3,4)$
(2) $(3,-4)$
(3) $(-3,4)$
(4) $(-3,-4)$

Sol. (4)
Let the other point is (h, k).

$$
\begin{aligned}
& \frac{h+1}{2}=-1 \\
& \Rightarrow h=-3 \\
& \frac{k}{2}=-2 \\
& \Rightarrow k=-4
\end{aligned}
$$

23. A focus of an ellipse is at the origin. The directrix is the line $x=4$ and the eccentricity is $\frac{1}{2}$. Then the length of the semi-major axis is
(1) $\frac{5}{3}$
(2) $\frac{8}{3}$
(3) $\frac{2}{3}$
(4) $\frac{4}{3}$

Sol. (2)
Distance between focus and directrix $=\left(\frac{\mathrm{a}}{\mathrm{e}}-\mathrm{ae}\right)$
$\Rightarrow a\left(\frac{1-e^{2}}{e}\right)=4$ (given)
$\Rightarrow a\left(\frac{1-\frac{1}{4}}{\frac{1}{2}}\right)=4$
$\Rightarrow a=\frac{8}{3}$
24. The solution of the differential equation $\frac{d y}{d x}=\frac{x+y}{x}$ satisfying the condition $y(1)=1$ is
(1) $y=x \ln x+x$
(2) $y=\ln x+x$
(3) $y=x \ln x+x^{2}$
(4) $y=x e^{(x-1)}$

Sol. (1)

$$
\begin{aligned}
& \frac{d y}{d x}=1+\frac{y}{x} \\
& \Rightarrow \frac{d y}{d x}-\frac{y}{x}=1 \\
& \Rightarrow y \cdot \frac{1}{x}=\int \frac{1}{x} d x \\
& \Rightarrow \frac{y}{x}=\ln x+c \\
& y=x \ln x+c x \\
& \text { Now, } 1=1 \cdot \ln 1+c \quad \Rightarrow c=1 \\
& \therefore y=x \ln x+x
\end{aligned}
$$

25. Let a, b, c be any real numbers. Suppose that there are real numbers x, y, z not all zero such that $x=c y+b z, y=a z+c x$, and $z=b x+a y$. Then $a^{2}+b^{2}+c^{2}+2 a b c$ is equal to
(1) 1
(2) 2
(3) -1
(4) 0

Sol. (1)

$$
\begin{aligned}
& \because \Delta=0 \\
& \Rightarrow\left|\begin{array}{ccc}
1 & -c & -b \\
c & -1 & \mathrm{a} \\
\mathrm{~b} & \mathrm{a} & -1
\end{array}\right|=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 1\left(1-a^{2}\right)+c(-c-a b)-b(a c+b)=0 \\
& \Rightarrow 1-a^{2}-c^{2}-a b c-a b c-b^{2}=0 \\
& \Rightarrow a^{2}+b^{2}+c^{2}+2 a b c=1
\end{aligned}
$$

26. Let A be a square matrix all of whose entries are integers. Then which one of the following is true ?
(1) If det $A= \pm 1$, then A^{-1} need not exist
(2) If det $A= \pm 1$, then A^{-1} exists but all its entries are not necessarily integers
(3) If det $A \neq \pm 1$, then A^{-1} exists and all its entries are non-integers
(4) If det $A= \pm 1$, then A^{-1} exists and all its entries are integers

Sol. (4)
$\because \operatorname{det} A= \pm 1 \Rightarrow$ inverse of matrix A exists and since all entries of matrix A are integers and $A d j$
A is matrix of transpose of co-factors of matrix A.
\therefore Entries of Adj A is also integers.
27. The quadratic equations $x^{2}-6 x+a=0$ and $x^{2}-c x+6=0$ have one root in common. The other roots of the first and second equations are integers in the ratio $4: 3$. Then the common roots is
(1) 2
(2) 1
(3) 4
(4) 3

Sol. (1)
Let α, β are roots of $x^{2}-6 x+a=0$
and α, γ are roots of $x^{2}-c x+6=0$
$\therefore \alpha+\beta=6, \alpha \beta=\mathrm{a}$
and $\alpha+\gamma=c, \alpha \gamma=6$
$\because \frac{\alpha \beta}{\alpha \gamma}=\frac{\mathrm{a}}{6} \Rightarrow \frac{\beta}{\gamma}=\frac{\mathrm{a}}{6} \Rightarrow \frac{4}{3}=\frac{\mathrm{a}}{6} \Rightarrow \mathrm{a}=8$
\therefore From (i) $\mathrm{x}^{2}-6 \mathrm{x}+8=0 \Rightarrow \mathrm{x}=2,4 ; \because \alpha \gamma=6 \Rightarrow \alpha$ cannot be $4(\because \gamma$ is integer $)$
$\Rightarrow \alpha=2$
28. The mean of the numbers $a, b, 8,5,10$ is 6 and the variance is $6 \cdot 80$. Then which one the following gives possible values of a and b ?
(1) $a=3, b=4$
(2) $a=0, b=7$
(3) $a=5, b=2$
(4) $a=1, b=6$

Sol. (1)

$$
\begin{align*}
& \frac{a+b+8+5+10}{5}=6 \\
& \Rightarrow a+b=7 \tag{i}\\
& \frac{(a-6)^{2}+(b-6)^{2}+4+1+16}{5}=6.8 \\
& \Rightarrow a^{2}+b^{2}+93-12(a+b)=34 \\
& \Rightarrow a^{2}+b^{2}=25 \tag{ii}
\end{align*}
$$

By equation (i) and (ii), we get

$$
a=3, b=4
$$

29. The vector $\vec{a}=\alpha \hat{i}+2 \hat{j}+\beta \hat{k}$ lies in the plane of the vectors $\vec{b}=\hat{i}+\hat{j}$ and $\vec{c}=\hat{j}+\hat{k}$ and bisects the angle between \vec{b} and \vec{c}. Then which one of the following gives possible values of α and β ?
(1) $\alpha=1, \beta=1$
(2) $\alpha=2, \beta=2$
(3) $\alpha=1, \beta=2$
(4) $\alpha=2, \beta=1$

Sol. (1)
$\because \vec{a}, \vec{b}, \vec{c}$ are co-planar
$\therefore\left|\begin{array}{ccc}\alpha & 2 & \beta \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right|=0$
$\Rightarrow \alpha+\beta=2$
and angle between \vec{a} and \vec{b} is same as \vec{a} and \vec{c}

$$
\begin{equation*}
\therefore \frac{\alpha+2}{\sqrt{\alpha^{2}+4+\beta^{2}} \sqrt{2}}=\frac{2+\beta}{\sqrt{\alpha^{2}+4+\beta^{2}} \sqrt{2}} \Rightarrow \alpha=\beta \tag{ii}
\end{equation*}
$$

From (i) and (ii), we get
$\alpha=1, \beta=1$
30. The non-zero vectors \vec{a}, \vec{b} and \vec{c} are related by $\vec{a}=8 \vec{b}$ and $\vec{c}=-7 \vec{b}$. Then the angle between \vec{a} and \vec{c}
(1) π
(2) 0
(3) $\frac{\pi}{4}$
(4) $\frac{\pi}{2}$

Sol. (1)
$\because \vec{a}$ and \vec{b} are parallel with same direction and \vec{b} and \vec{c} are parallel with opposite direction.
\therefore Angle between $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{c}}$ is π.
31. The line passing through the points $(5,1, a)$ and $(3, b, 1)$ crosses the $y z$-plane at the point $\left(0, \frac{17}{2}, \frac{-13}{2}\right)$. Then
(1) $a=8, b=2$
(2) $a=2, b=8$
(3) $a=4, b=6$
(4) $a=6, b=4$

Sol (4) Equation of line is

$$
\frac{x-5}{2}=\frac{y-1}{1-b}=\frac{z-a}{a-1}
$$

$\therefore \quad$ It passes through $\left(0, \frac{17}{2},-\frac{13}{2}\right)$
$\therefore \quad-\frac{5}{2}=\frac{\frac{17}{2}-1}{1-b}=\frac{-\frac{13}{2}-1}{a-1}$
From Ist and 2nd ratio

$$
\begin{aligned}
& -5+5 b=17-2 \\
& \Rightarrow b=4
\end{aligned}
$$

and from Ist and IIrd ratio

$$
\begin{aligned}
-5 a+5 & =-13-2 a \\
\Rightarrow \quad 3 a=18 & \Rightarrow a=6 .
\end{aligned}
$$

32. If the straight lines $\frac{x-1}{k}=\frac{y-2}{2}=\frac{z-3}{3}$ and $\frac{x-2}{3}=\frac{y-3}{k}=\frac{z-1}{2}$ intersect at a point, then the integer k is equal to
(1) -2
(2) -5
(3) 5
(4) 2

Sol (2) $\therefore \quad$ Lines are intersecting

$$
\begin{aligned}
& \therefore \quad\left|\begin{array}{ccc}
2-1 & 3-2 & 1-3 \\
k & 2 & 3 \\
3 & k & 2
\end{array}\right|=0 \Rightarrow\left|\begin{array}{ccc}
1 & 1 & -2 \\
k & 2 & 3 \\
3 & k & 2
\end{array}\right|=0 \\
& \Rightarrow \quad 1(4-3 k)-1(2 k-9)-2\left(k^{2}-6\right)=0 \\
& \Rightarrow \quad 4-3 k-2 k+9-2 k^{2}+12=0 \\
& \Rightarrow \quad 2 k^{2}+5 k-25=0 \\
& \Rightarrow \quad k=-5,5 / 2
\end{aligned}
$$

33. The conjugate of a complex number is $\frac{1}{i-1}$. Then that complex number is
(1) $\frac{1}{i-1}$
(2) $\frac{-1}{i-1}$
(3) $\frac{1}{i+1}$
(4) $\frac{-1}{i+1}$

Sol (4) $\therefore \quad z \bar{z}=|z|^{2}$
$\Rightarrow \quad \mathrm{z} \times \frac{1}{-1+\mathrm{i}}=\frac{1}{2}$
$\Rightarrow \quad z=\frac{-1+i}{2} \times \frac{-1-i}{-1-i}$ $=\frac{1+1}{2(-1-i)}=\frac{-1}{1+i}$
34. Let R be the real line. Consider the following subsets of the plane $R \times R$:
$S=\{(x, y): y=x+1$ and $0<x<2\}$
$T=\{(x, y): x-y$ is an integer $\}$.
Which one of the following is true ?
(1) T is an equivalence relation on R out S is not
(2) Neither S nor T is an equivalence relation on R
(3) Both S and T are equivalence relations on R
(4) S is an equivalence relation on R but T is not

Sol (1) $\quad \because S$ is not reflexive $\Rightarrow S$ in not equivalance relation.
T is reflexive, Symmetric, and transitive
$\Rightarrow \mathrm{T}$ is equivalance relation.
35. Let $f: N \rightarrow Y$ be a function defined as

$$
f(x)=4 x+3 \text { where }
$$

$Y=\{y \in N: y=4 x+3$ for some $x \in N\}$.
Show that f is invertible and its inverse is
(1) $g(y)=\frac{y-3}{4}$
(2) $g(y)=\frac{3 y+4}{3}$
(3) $g(y)=4+\frac{y+3}{4}$
(4) $g(y)=\frac{y+3}{4}$

Sol (1) $\quad y=4 x+3$
$\Rightarrow \quad x=\frac{y-3}{4}$
$\therefore \quad g(y) g(y)=\frac{y-3}{4}$

