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SAMPLE OF THE STUDY MATERIAL  

 PART OF CHAPTER 1 

STRESS AND STRAIN 

 
1.1 Stress & Strain 

Stress is the internal resistance offered by the body per unit area. Stress is represented as force per 
unit area. Typical units of stress are N/m2

A
P areatonormal __=σ

, ksi and MPa. There are two primary types of stresses: 
normal stress and shear stress. Normal stress, σ, is calculated when the force is normal to the 
surface area; whereas the shear stress, τ, is calculated when the force is parallel to the surface 
area.  

 

A
P areatoparallel __=τ  

Linear strain (normal strain, longitudinal strain, axial strain), ε, is a change in length per unit 
length. Linear strain has no units. Shear strain, γ, is an angular deformation resulting from shear 
stress. Shear strain may be presented in units of radians, percent, or no units at all. 

L
δε =  

θθ
δ

γ ≈== tan__

Height
areatoparallel  [θ in radians] 

Example: 
A composite bar consists of an aluminum section rigidly fastened between a bronze section and a 
steel section as shown in Fig. 1.1. Axial loads are applied at the positions indicated. Determine 
the stress in each section. 
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Figure 1.1 

 
Solution 

To calculate the stresses, we must first determine the axial load in each section. The appropriate 
free-body diagrams are shown in Fig. 1.2 below from which we determine  
(tension), and  (compression).  

 

 

 
Figure 1.2 

 
The stresses in each section are 

    (tension)             

    (compression)   

    (compression)  

Note that neither the lengths of the sections nor the materials from which the sections are made 
affect the calculations of the stresses. 

1.2 Hooke’s Law: Axial and Shearing Deformations 
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Hooke‘s law is a simple mathematical relationship between elastic stress and strain: stress is 
proportional to strain. For normal stress, the constant of proportionality is the modulus of 
elasticity (Young’s Modulus), E. 

εσ E=  
The deformation, δ, of an axially loaded member of original length L can be derived from 
Hooke’s law. Tension loading is considered to be positive, compressive loading is negative. The 
sign of the deformation will be the same as the sign of the loading. 

AE
PL

E
LL =






 σ

=ε=δ  

This expression for axial deformation assumes that the linear strain is proportional to the normal 

stress ( )E
σε =  and that the cross-sectional area is constant. 

When an axial member has distinct sections differing in cross-sectional area or composition, 
superposition is used to calculate the total deformation as the sum of individual deformations. 

∑ ∑==
AE
LP

AE
PLδ  

When one of the variables (e.g., A), varies continuously along the length, 

∫∫ ==
AE
dLP

AE
PdLδ  

The new length of the member including the deformation is given by 

δ+= LL f  

The algebraic deformation must be observed. 

Hooke’s law may also be applied to a plane element in pure shear. For such an element, the shear 
stress is linearly related to the shear strain, by the shear modulus (also known as the modulus of 
rigidity), G. 

γτ G=  

The relationship between shearing deformation, δs

AG
VL

s =δ

 and applied shearing force, V is then 
expressed by 

  

Example: 
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If a tension test bar is found to taper uniformly from (D – a) to (D + a) diameter, prove that the 

error involved in using the mean diameter to calculate the Young’s Modulus is  

Solution: 

 Let the two diameters be (D + a) and (D – a) as shown in Fig. 1.3. Let E be the Young’s Modulus 
of elasticity. Let the extension of the member be . 

 
Figure 1.3 

Then,  =  

  

If the mean diameter D is adopted, let  be the computed Young’s modulus. 

Then  =  

 =  

Hence, percentage error in computing Young’s modulus =   

= 100 

= 100 

=  percent. 
 

(D
 +

 a
) 

(D
 - 

a)
 

L 

P P 



Strength of Material                                                                                    Stress and Strain  
 

 
                                                                                                                                                                Page :  5 

Example: 

A weight of 45 kN is hanging from three wires of equal length as shown in Fig. 1.4. The middle 
one is of steel and the two other wires are of copper. If the cross – section of each wire is 322 sq. 
mm, find the load shared by each wire. Take  = 207 N/  and  = 124.2N/ . 

 
Figure 1.4 

 
Solution: 

Let 

 = load carried by the copper wire 

 = load carried by the steel wire 

 = stress in copper wire 

 = stress in steel wire 

Then,  +  +  = 45000 N 

or 2  +  = 45000 

Also, strain in steel wire = strain in copper wire 

Hence  =  

or  =  =  = 0.6 

But, 45000 = 2  +  = 2  

= 322 (2  + ) = 322(2  0.6  + ) 

45 kN 

St
ee

l 

C
u C
u 
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 =  = 63.5 N/  
 = a = 63.5  322 = 20.447 kN 

 =  = 12.277 kN 

 
Example: 

Compute the total elongation caused by an axial load of 100 kN applied to a flat bar 20 mm thick, 
tapering from a width of 120 mm to 40 mm in a length of 10 m as shown in Fig. 1.5. Assume 

.[1 Pa = 1N/m2

 
Figure 1.5 

 
Solution: 

Consider a differential length for which the cross-sectional area is constant. Then the total 

elongation is the sum of these infinitesimal elongations. 

] 

At section m-n, the half width  (mm) at a distance  (m) from the left end is found from 

geometry to be 

    or     mm 

And the area at that section is 

 

At section , in a differential length , the elongation is given by 

    

 

from which the total elongation is 

20 mm thick 

20 mm 

P =  
100 kN 

 

 
  

10 m 

60 mm 

P =  
100 kN 
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 mm    

 
Example: 

A compound tube is made by shrinking a thin steel tube on a thin brass tube.  and Ab 

 =  = strain         …… (i) 

are cross-
sectional areas of steel and brass tubes respectively,  and  are the corresponding values of the 
Young’s Modulus. Show that for any tensile load, the extension of the compound tube is equal to 
that of a single tube of the same length and total cross-sectional area but having a Young’s 
Modulus of . 

Solution:  

Where  and  are stresses in steel and brass tubes respectively. 

 +  = P         ……. (ii) 

where P – total load on the compound tube. 

From equations (i) and (ii); .   +  = P 

 = P 

         ……. (iii) 

Extension of the compound tube = dl = extension of steel or brass tube 

 =           …….. (iv) 

From equations (iii) and (iv); 

 =         …….. (v) 

Let E be the Young’s modulus of a tube of area (  + ) carrying the same load and undergoing 

the same extension 

 =          ……. (vi) 

equation (v) = (vi) 
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   =  or E =  

 
Example: 

The diameters of the brass and steel segments of the axially loaded bar shown in Fig. 1.6 are 30 
mm and 12 mm respectively. The diameter of the hollow section of the brass segment is 20 mm. 
Determine: 

(i) The displacement of the free end; 

(ii) The maximum normal stress in the steel and brass  

Take  and . 
 
Solution: 

In the Figure shown below, 

 

 
Figure 1.6 

 

 

 

(i) The maximum normal stress in steel and brass: 

 

 

 

0.125 m 

10 kN 
12 mm  φ 

5 KN 
30 mm  φ 20 mm  φ 

A 
B Brass C D 

0.15 m 
0.2 m 

Steel 
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3.5 cm 

Roof 

C 

A 

2 

1.8 cm 

0.6 cm 
2.5 cm 

1 

E 

0.3 m 

D 
B 

60 kN 
0.6 m 

Figure 1.7 

(ii) The displacement of the free end: 
The displacement of the free end 

 

 

 
178×  m or 0.09178 mm . 

 
Example: 

A beam AB hinged at A is loaded at B as shown in Fig. 1.7. It is supported from the roof by a 2.4 
cm long vertical steel bar CD which is 3.5 cm square for the first 1.8 m length and 2.5 cm square 
for the remaining length. Before the load is applied, the beam hangs horizontally. Take 

 
Determine: 
(i) The maximum stress in the steel bar CD; 

(ii) The total elongation of the bar. 

 
Solution: 

Given: 
 
 

 
 

Let P = The pull in the bar CD. 
Then, taking moments about A, we get 

 
∴ P = 90 kN 
 
(i) The maximum stress in the steel bar CD, : 

The stress shall be maximum in the portion DE of the  
steel bar CD. 

 

 
 
(ii) The total elongation of the bar CD, 
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1.3 Stress-Strain Diagram 

 
Figure 1.8 

 

Proportional Limit: 

It is the point on the stress strain curve up to which stress is proportional to strain. 

Elastic Limit: 

It is the point on the stress strain curve up to which material will return to its original shape when 
unloaded. 

Yield Point: 

Stress 

 

Yield point 

Elastic limit 
Proportional limit 

Rupture 
strength 

Ultimate strength 

Actual rupture 
strength 

0 
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It is the point on the stress strain curve at which there is an appreciable elongation or yielding of 
the material without any corresponding increase of load; indeed the load actually may decrease 
while the yielding occurs. 

Ultimate Strength: 

It is the highest ordinate on the stress strain curve. 

Rupture Strength: 

It is the stress at failure 
 
1.4 Poisson’s Ratio: Biaxial and Triaxial Deformations 

Poisson’s ratio, ν, is a constant that relates the lateral strain to the axial strain for axially loaded 
members. 

axial

lateral

ε
ε

ν −=  

Theoretically, Poisson’s ratio could vary from zero to 0.5, but typical values are 0.33 for 
aluminum and 0.3 for steel and maximum value of 0.5 for rubber. 

Poisson’s ratio permits us to extend Hooke’s law of uniaxial stress to the case of biaxial stress. 
Thus if an element is subjected simultaneously to tensile stresses in x and y direction, the strain in 
the x direction due to tensile stress σx is σx/E. Simultaneously the tensile stress σy will produce 
lateral contraction in the x direction of the amount νσy

EE
yx

x

σ
ν−

σ
=ε

/E, so the resultant unit deformation or 
strain in the x direction will be 

      
 

Similarly, the total strain in the y direction is 

EE
xy

y
σ

ν−
σ

=ε  

Hooke’s law can be further extended for three-dimensional stress-strain relationships and written 
in terms of the three elastic constants, E, G, and ν. The following equations can be used to find 
the strains caused due to simultaneous action of triaxial tensile stresses: 

( )[ ]zyxx E
1

σ+σν−σ=ε  

( )[ ]xzyy E
1

σ+σν−σ=ε  
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( )[ ]yxzz E
1

σ+σν−σ=ε  

G
xy

xy

τ
γ =  

G
yz

yz

τ
γ =  

G
zx

zx
τ

γ =  

 
For an elastic isotropic material, the modulus of elasticity E, shear modulus G, and Poisson’s ratio 
ν are related by 

( )ν+
=

12
EG  

( )ν+= 12GE  

The bulk modulus (K) describes volumetric elasticity, or the tendency of an object's volume to 
deform when under pressure; it is defined as volumetric stress over volumetric strain, and is the 
inverse of compressibility. The bulk modulus is an extension of Young's modulus to three 
dimensions. 

For an elastic, isotropic material, the modulus of elasticity E, bulk modulus K, and Poisson’s ratio 
ν are related by 

( )ν−= 21K3E  

Example: 

A thin spherical shell 1.5 m diameter with its wall of 1.25 cm thickness is filled with a fluid at 
atmospheric pressure. What intensity of pressure will be developed in it if 160 cu.cm more of 
fluid is pumped into it? Also, calculate the hoop stress at that pressure and the increase in 
diameter. Take E = 200 GPa and ν = 0.33. 

Solution: 

At atmospheric pressure of fluid in the shell, there will not be any increase in its volume since the 
outside pressure too is atmospheric. But, when 160 cu. cm of fluid is admitted into it forcibly, the 
sphere shall have to increase its volume by 160 cu. cm. 

http://en.wikipedia.org/wiki/Bulk_modulus�
http://en.wikipedia.org/wiki/Stress_%28physics%29#Stress_deviator_tensor�
http://en.wikipedia.org/wiki/Compressibility�
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 increase in volume = 160 cu. cm. 
V = (4 / 3)  = (4 / 3)  cu. cm. 

 

 = 3e

 =   
x 

 increase in diameter =   

= 0.00453 cm 
 

1.5 Thermal stresses 

Temperature causes bodies to expand or contract. Change in length due to increase in temperature 
can be expressed as 

 = L.α.∆t 
Where, L is the length, α (/oC) is the coefficient of linear expansion, and ∆t (o

ϵ =  = α∆t 
If a temperature deformation is permitted to occur freely no load or the stress will be induced in 
the structure. But in some cases it is not possible to permit these temperature deformations, which 
results in creation of internal forces that resist them. The stresses caused by these internal forces 
are known as thermal stresses. 
 
When the temperature deformation is prevented, thermal stress developed due to temperature 
change can be given as: 

σ = E.α.∆t 
 

Example: 

C) is the 
temperature change. 
From the above equation thermal strain can be expressed as: 

A copper rod of 15 mm diameter, 800 mm long is heated through 50 C. (a) What is its extension 
when free to expand? (b) Suppose the expansion is prevented by gripping it at both ends, find the 
stress, its nature and the force applied by the grips when one grip yields back by 0.5 mm. 

 per C 
 

Solution: 
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(a) Cross-sectional area of the rod = sq.mm 

Extension when the rod is free to expand 

=   = 18.5  = 0.74 mm 
(b) When the grip yields by 0.5 mm, extension prevented = =  - 0.5 = 0.24 mm 

Temperature strain =  

Temperature stress =  
= 37.5 N/ (comp.) 
Force applied = 37.5  = 6627 N 

 
Example: 

A steel band or a ring is shrunk on a tank of 1 metre diameter by raising the temperature of the 
ring through 60 C. Assuming the tank to be rigid, what should be the original inside diameter of 
the ring before heating? Also, calculate the circumferential stress in the ring when it cools back to 
the normal temperature on the tank. 

 = 200 kN/  
 
Solution: 

Let d mm be the original diameter at normal temperature and D mm, after being heated through 

60 C. D should be, of course, equal to the diameter of the tank for slipping the ring on to it. 

Circumference of the ring after heating =  D mm. 

Circumference of the ring at normal temperature =  d mm 

The ring after having been slipped on the tank cannot contract to  d and it cools down resulting 

in tensile stress in it. 

 Contraction prevented = (D – d) 

Temperature strain = –  

  =  or  

from which d = 999.4 mm 

circumferential temperature stress or stress due to prevention of contraction of the ring 

=  TE =  60   = 12 N/  
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Example: 

A steel rod 2.5 m long is secured between two walls. If the load on the rod is zero at C, 
compute the stress when the temperature drops to . The cross-sectional area of the rod is 
1200  and . Solve, assuming (a) that the walls are rigid 
and (b) that the walls spring together a total distance of 0.500 mm as the temperature drops. 

Solution: 
Part a. Imagine the rod is disconnected from the right wall. Temperature deformations can then 
freely occur. A temperature drop causes the contraction represented by  in Fig. 1.9. To reattach 
the rod to the wall, it will evidently require a pull  to produce the load deformation . From the 
sketch of deformations, we see that , or, in equivalent terms 

  
from which we have 

 
     Ans.    

 
Figure 1.9 

 
Part b. When the walls spring together, Fig. 1.9 shows that the free temperature contraction is 
equal to the sum of the load deformation and the yield of the walls. 
Hence 

 yield 
Replacing the deformations by equivalent terms, we obtain 

 yield 

P 

 

 

P 

 

 

Yield 
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or   
from which we obtain 

 . 
 
Example: 

A composite bar made up of aluminium and steel is firmly held between two unyielding supports 
as shown in Fig. 1.10. 

 
Figure 1.10 

 

An axial load of 200 kN is applied at B at 50℃. Find the stresses in each material when the 
temperature is 100℃. Take E for aluminium and steel as 70 GN/  and 210 GN/  respectively. 
Coefficient of expansion for aluminium and steel are 24 ×  per ℃ and 11.8 ×  per ℃ 
respectively. 

 
Solution: 

Given: 

 = 15 

cm = 0.15 m;  = 50℃,  = 100℃; Load, P = 200 kN 

 = 70 GN/ ;  = 210 GN/ ;  = 24 ×  per ℃,  = 11.8 ×  per ℃. 

Stresses; ; 

Out of 200 kN load(P) applied at B, let  kN be taken up by AB and (20 - ) kN by BC. 

Since the supports are rigid, 

Elongation of AB = contraction of BC. 

 

10  15  

15  10  

B 
A C 

Aluminum bar 

200 kN 

Steel bar 
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Stress in aluminium,  50 MN/  (Tensile) 

Stress in steel,  = 100 MN/  (Compressive) 

These are the stresses in the two materials (Aluminium and steel) at 50℃.  

Now let the temperature be raised to 100℃. In order to determine the stresses due to rise of 

temperature, assume that the support at C is removed and expansion is allowed free. 

Rise of temperature =  

Expansion of AB  m                         . . . (i) 

Expansion of BC  m. 

Let a load be applied at C which causes a total contraction equal to the total expansion and let C 

be attached to rigid supports. 

If this load causes stress σ N/  in BC, its value must be 15 ×  σ and hence stress in AB 

must be  = 1.5 σ N/  

Total contraction caused by the load 

 

From eqns. (i) ans (ii), we have 

 

 

0.6 σ = 210 × 208500 = 43785000 

∴ σ = 72.97 ×  N/  or 72.97 MN/  (Compressive) 

∴ At 100℃, 
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Stress in aluminium,  = -  + 1.5 × 72.97 

 59.45 MN/  (comp.)  

Stress in steel,  

 = 172.97 MN/  (comp.)  

 
1.6 Thin-Walled Pressure Vessels 

Cylindrical shells  

 

Figure 1.11 

10 : (2 ) (2 ) 0zF t x p r xσ= ∆ − ∆ =∑  

Hoop stress or circumferential stress =  pr/t = pd/2t 



Strength of Material                                                                                    Stress and Strain  
 

 
                                                                                                                                                                Page :  19 

 

Figure 1.12 

2
20 : (2 ) (2 ) 0xF rt p rσ π π= − =∑  

Longitudinal stress = pr/2t = pd/4t 

 

Figure 1.13 

 

Spherical shells 
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Figure 1.14 

2
20 : (2 ) (2 ) 0xF rt p rσ π π= − =∑  

Hoop stress = longitudinal stress =  1 2 2
pr
t

σ σ= =  

 

Figure 1.15 

 
Example: 

A cylindrical shell 900 mm long, 150 mm internal diameter, having a thickness of metal as 8 mm, 
is filled with a fluid at atmospheric pressure. If an additional 20000  of fluid is pumped into 
the cylinder, find (i) the pressure exerted by the fluid on the cylinder and (ii) the hoop stress 
induced. Take E = 200 kN/  and  = 0.3 
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Solution: 

Let the internal pressure be p. N/ . 

Hoop stress =  = 9.375p N/  

Longitudinal stress =  = 4.6875p N/  

Circumferential strain =  

=  (9.375 – 0.3  4.6875) 

= 7.96875  

Longitudinal strain =  

=  (4.6875 – 0.3  9.375) = 17.8125  

Increase in volume = V = 20000  

 17.8125  900 = 20000 

(i) p = 14.12 N/  

(ii)  =  = 132.4 N/  

 
1.7 Mohr’s Circle  

Mohr's circle gives us a graphic tool by which, we can compare the different stress transformation 
states of a stress cube to a circle. Each different stress combination is described by a point around 
the circumference of the circle. 

Compare the stress cube to a circle created using the circle offset 

     x ya ave
+

⇒ =
σ σ

σ
2

                and            x yR xy
−

= +
 
 
 

σ σ
τ

2
2

2
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Figure 1.16                                          

           

Figure 1.17                                               

Notes:    

• +τ (meaning counterclockwise around the cube) is downward 

• - τ (meaning clockwise around the cube) is up on the axis 

• A rotation angle of θ on the stress cube shows up as 2θ on the circle diagram and rotates in 

the same direction. The largest and smallest values of σ are the principle stresses, σ1 and σ2. 

σ 

+τ 

x y
xyR

− 
= + 

 

2

2

2

σ σ
τ  

σave 

-τ y 

x 

(σx , τxy ) 

(σx , -τxy ) 

A 

B 

x y−

2

σ σ

 
xyτ
 

R  

x 

y 

τyx 

σx 

τxy 

σx 

σy 

σy 

τxy 

τyx 

x-face coordinate:    ( x xy, )σ τ  

y-face coordinates:  ( y xy, )−σ τ  
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The largest shear stress, τmax is equal to the radius of the circle, R. The center of the circle is 

located at the value of the average stress, σ

• If σ

ave 

1 = σ2

• If the plane contain only shear and no normal stress (pure shear), then origin and centre of the 

circle will coincide and maximum and minimum principal stress equal and opposite. 

 in magnitude and direction (nature) the Mohr circle will reduce into a point and no 

shear stress will be developed. 

σ1 = + τ , σ2 

• The summation of normal stresses on any two mutually perpendicular planes remains 

constant. 

= -τ 

σx + σy = σ1 + σ

1.8 Applications: Thin-Walled Pressure Vessels  

2 

 

Cylindrical shells: 

Hoop stress or circumferential stress =  

Longitudinal stress =   

 

Figure 1.18 
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Figure 1.19 

 

 

Spherical shells: 

Hoop stress = longitudinal stress =  

 

Figure 1.20 
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Figure 1.21 

 

Example: 

At a certain point a material is subjected to the following strains: 
; ; 
. 

Determine the magnitudes of the principal strains, the directions of the principal strain axes and 
the strain on an axis inclined at 30  clockwise to the x-axis. 

 
 
Solution: 

Mohr’s strain circle is as shown in Figure 1.22. 
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Figure 1.22 

 
By measurement: 

 = 500   100  
  = 120  

 = 200  
the angles being measured counterclockwise from the direction of  . 
 

Example: 

Draw Mohr’s circle for a 2-dimensional stress field subjected to (a) pure shear (b) pure biaxial 
tension, (c) pure uniaxial tension and (d) pure uniaxial compression. 
 

Solution: 

Mohr’s circles for 2-dimensional stress field subjected to pure shear, pure biaxial tension, pure 
uniaxial compression and pure uniaxial tension are shown in Fig. 1.23(a) to 1.23(d). 

0 

100 

200 

100 200 300 400 500 

 = 500 

 = 100 

 = 100 

 

60  60  
 

+  

 

 = 30  

30  
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Figure 1.23 

 
Example: 

A thin cylinder of 100 mm internal diameter and 5 mm thickness is subjected to an internal 
pressure of 10 MPa and a torque of 2000 Nm. Calculate the magnitudes of the principal stresses. 
 

Solution: 
Given: 

 

 N/ ; T = 2000 Nm. 

Principal stresses, : 

Longitudinal stress,  ×  N/  = 50 MN/  

Circumferential stress,  = 100 MN/  

To find the shear stress, using the relation, 

, we have 

 

τ 

  

 

τ 

 

 

 

  

 

 

τ 
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Principal stresses are calculated as follows: 

 

 

 

Hence,  (Major principal stress) = 109.75 MN/ ; (Ans.) 

 (minor principal stress) = 40.25 MN/  (Ans.) 

 
Example: 

A solid shaft of diameter 30 mm is fixed at one end. It is subject to a tensile force of 10 kN and a 
torque of 60 Nm. At a point on the surface of the shaft, determine the principle stresses and the 
maximum shear stress. 
 

Solution: 

Given:  

Principal stresses ( ) and maximum shear stress ( ): 

Tensile stress,  = 14.15 ×  N/  or 14.15 MN/  

 

Figure 1.24 

As per torsion equation,  

∴ Shear stress,  = 11.32 ×  N/  or 11.32 MN/  
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The principal stresses are calculated by using the relations: 

 

Here  = 14.15 MN/ ,  0;  = τ = 11.32 MN/  

 

 MN/ ,  6.275 MN/ . 

Hence, major principal stress,  MN/  (tensile) (Ans.) 

Minor principal stress,  = 6.275 MN/  (compressive (Ans.) 

Maximum shear stress,  = 13.35 mm/  (Ans.) 

 
Example: 

A thin cylinder with closed ends has an internal diameter of 50 mm and a wall thickness of 2.5 
mm. It is subjected to an axial pull of 10 kN and a torque of 500 Nm while under an internal 
pressure of 6 MN/ . 
(i) Determine the principal stresses in the tube and the maximum shear stress. 
(ii) Represent the stress configuration on a square element taken in the load direction with 

direction and magnitude indicated; (schematic) 
 
Solution: 

Given:  

Axial pull,  

(i) Principal stress ( ) in the tube and the maximum shear stress ( ): 

 

= 30 ×  + 25.5 ×  = 55.5 ×  N/  

 

Principal stresses are given by the relations: 



Strength of Material                                                                                    Stress and Strain  
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We know that,         

where   

 

 

Now, substituting the various values in eqn. (i), we have 

 

 

 MN/ , 9.42 MN/  

Hence, principal stress are:  = 106.08 MN/  ;                    = 9.42 MN/  Ans. 

Maximum shear stress,  = 48.33 MN/  Ans. 

(ii) Stress configuration on a square element: 

  

Figure 1.25 

 

 

Square 
element 

 

 

 

 
  

 


